]> git.mxchange.org Git - flightgear.git/blobdiff - src/Radio/radio.cxx
Remove hard-coded values wherever possible;
[flightgear.git] / src / Radio / radio.cxx
index ac278bf2f829c2b6a5fe6211b9491c7dbb99af52..4f2772e4ed04eb430f80a9aac3ff8f6e1f2714e1 100644 (file)
@@ -23,6 +23,7 @@
 #endif
 
 #include <math.h>
+
 #include <stdlib.h>
 #include <deque>
 #include "radio.hxx"
 
 FGRadioTransmission::FGRadioTransmission() {
        
-       /** radio parameters (which should probably be set for each radio) */
        
        _receiver_sensitivity = -110.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
        
        /** AM transmitter power in dBm.
-       *       Note this value is calculated from the typical final transistor stage output
-       *       small aircraft have portable transmitters which operate at 36 dBm output (4 Watts) others operate in the range 10-20 W
-       *       later possibly store this value in aircraft description
-       *       ATC comms usually operate high power equipment, thus making the link asymetrical; this is taken care of in propagation routines
        *       Typical output powers for ATC ground equipment, VHF-UHF:
        *       40 dBm - 10 W (ground, clearance)
        *       44 dBm - 20 W (tower)
@@ -57,15 +53,18 @@ FGRadioTransmission::FGRadioTransmission() {
        
        _rx_antenna_height = 2.0; // RX antenna height above ground level
        
-       /** pilot plane's antenna gain + AI aircraft antenna gain
-       *       real-life gain for conventional monopole/dipole antenna
-       **/
-       _antenna_gain = 2.0;
-       _propagation_model = 2; //  choose between models via option: realistic radio on/off
        
+       _rx_antenna_gain = 1.0; // gain expressed in dBi
+       _tx_antenna_gain = 1.0;
+       
+       _rx_line_losses = 2.0;  // to be configured for each station
+       _tx_line_losses = 2.0;
+       
+       _propagation_model = 2; 
+       _terrain_sampling_distance = fgGetDouble("/sim/radio/sampling-distance", 90.0); // regular SRTM is 90 meters
 }
 
-FGRadio::~FGRadio() 
+FGRadioTransmission::~FGRadioTransmission() 
 {
 }
 
@@ -115,10 +114,16 @@ double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmiss
 void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
 
        
+       if(ground_to_air == 1) {
+               _transmitter_power += 6.0;
+               _tx_antenna_height += 30.0;
+               _tx_antenna_gain += 3.0; 
+       }
+       
+       
        double comm1 = getFrequency(1);
        double comm2 = getFrequency(2);
        if ( !(fabs(freq - comm1) <= 0.0001) &&  !(fabs(freq - comm2) <= 0.0001) ) {
-               //cerr << "Frequency not tuned: " << freq << " Radio1: " << comm1 << " Radio2: " << comm2 << endl;
                return;
        }
        else {
@@ -130,13 +135,10 @@ void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, in
                        // TODO: free space, round earth
                        double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air);
                        if (signal <= 0.0) {
-                               SG_LOG(SG_GENERAL, SG_BULK, "Signal below receiver minimum sensitivity: " << signal);
-                               //cerr << "Signal below receiver minimum sensitivity: " << signal << endl;
                                return;
                        }
                        else {
-                               SG_LOG(SG_GENERAL, SG_BULK, "Signal completely readable: " << signal);
-                               //cerr << "Signal completely readable: " << signal << endl;
+                               
                                fgSetString("/sim/messages/atc", text.c_str());
                                /** write signal strength above threshold to the property tree
                                *       to implement a simple S-meter just divide by 3 dB per grade (VHF norm)
@@ -148,8 +150,6 @@ void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, in
                        // Use ITM propagation model
                        double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
                        if (signal <= 0.0) {
-                               SG_LOG(SG_GENERAL, SG_BULK, "Signal below receiver minimum sensitivity: " << signal);
-                               //cerr << "Signal below receiver minimum sensitivity: " << signal << endl;
                                return;
                        }
                        if ((signal > 0.0) && (signal < 12.0)) {
@@ -179,8 +179,6 @@ void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, in
                                fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
                        }
                        else {
-                               SG_LOG(SG_GENERAL, SG_BULK, "Signal completely readable: " << signal);
-                               //cerr << "Signal completely readable: " << signal << endl;
                                fgSetString("/sim/messages/atc", text.c_str());
                                /** write signal strength above threshold to the property tree
                                *       to implement a simple S-meter just divide by 3 dB per grade (VHF norm)
@@ -224,16 +222,11 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        
        double clutter_loss = 0.0;      // loss due to vegetation and urban
        double tx_pow = _transmitter_power;
-       double ant_gain = _antenna_gain;
+       double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
        double signal = 0.0;
        
-       if(transmission_type == 1)
-               tx_pow = _transmitter_power + 6.0;
-
-       if((transmission_type == 1) || (transmission_type == 3))
-               ant_gain = _antenna_gain + 3.0; //pilot plane's antenna gain + ground station antenna gain
        
-       double link_budget = tx_pow - _receiver_sensitivity + ant_gain; 
+       double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;     
 
        FGScenery * scenery = globals->get_scenery();
        
@@ -250,11 +243,7 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        SGGeoc center = SGGeoc::fromGeod( max_own_pos );
        SGGeoc own_pos_c = SGGeoc::fromGeod( own_pos );
        
-       /**     position of sender radio antenna (HAAT)
-                       sender can be aircraft or ground station
-       **/
-       double ATC_HAAT = 30.0;
-       double Aircraft_HAAT = 5.0;
+       
        double sender_alt_ft,sender_alt;
        double transmitter_height=0.0;
        double receiver_height=0.0;
@@ -266,7 +255,7 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos );
        //cerr << "ITM:: sender Lat: " << parent->getLatitude() << ", Lon: " << parent->getLongitude() << ", Alt: " << sender_alt << endl;
        
-       double point_distance= 90.0; // regular SRTM is 90 meters
+       double point_distance= _terrain_sampling_distance; 
        double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c);
        double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
        double probe_distance = 0.0;
@@ -284,14 +273,16 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        }
        
                
-       double max_points = distance_m / point_distance;
+       int max_points = (int)floor(distance_m / point_distance);
+       double delta_last = fmod(distance_m, point_distance);
+       
        deque<double> _elevations;
        deque<string> materials;
        
 
        double elevation_under_pilot = 0.0;
        if (scenery->get_elevation_m( max_own_pos, elevation_under_pilot, NULL )) {
-               receiver_height = own_alt - elevation_under_pilot + 3; //assume antenna located 3 meters above ground
+               receiver_height = own_alt - elevation_under_pilot
        }
 
        double elevation_under_sender = 0.0;
@@ -302,10 +293,10 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
                transmitter_height = sender_alt;
        }
        
-       if(transmission_type == 1) 
-               transmitter_height += ATC_HAAT;
-       else
-               transmitter_height += Aircraft_HAAT;
+       
+       transmitter_height += _tx_antenna_height;
+       receiver_height += _rx_antenna_height;
+       
        
        SG_LOG(SG_GENERAL, SG_BULK,
                        "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters");
@@ -354,11 +345,13 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        }
        if((transmission_type == 3) || (transmission_type == 4)) {
                _elevations.push_front(elevation_under_pilot);
-               _elevations.push_back(elevation_under_sender);
+               if (delta_last > (point_distance / 2) )                 // only add last point if it's farther than half point_distance
+                       _elevations.push_back(elevation_under_sender);
        }
        else {
                _elevations.push_back(elevation_under_pilot);
-               _elevations.push_front(elevation_under_sender);
+               if (delta_last > (point_distance / 2) )
+                       _elevations.push_front(elevation_under_sender);
        }
        
        
@@ -370,7 +363,7 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        }
        
        double num_points= (double)_elevations.size();
-       //cerr << "ITM:: Max alt between: " << max_alt_between << ", num points:" << num_points << endl;
+
        _elevations.push_front(point_distance);
        _elevations.push_front(num_points -1);
        int size = _elevations.size();
@@ -415,41 +408,42 @@ void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm
        double transmitter_height, double receiver_height, int p_mode,
        double horizons[], double &clutter_loss) {
        
+       distance_m = itm_elev[0] * itm_elev[1]; // only consider elevation points
+       
        if (p_mode == 0) {      // LOS: take each point and see how clutter height affects first Fresnel zone
                int mat = 0;
-               int j=1; // first point is TX elevation, last is RX elevation
-               for (int k=3;k < (int)itm_elev[0];k++) {
+               int j=1; 
+               for (int k=3;k < (int)(itm_elev[0]) + 2;k++) {
                        
                        double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                        double clutter_density = 0.0;   // percent of reflected wave
                        get_material_properties(materials[mat], clutter_height, clutter_density);
-                       //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                       double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 1] + receiver_height) / distance_m;
+                       
+                       double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
                        // First Fresnel radius
                        double frs_rad = 548 * sqrt( (j * itm_elev[1] * (itm_elev[0] - j) * itm_elev[1] / 1000000) / (  distance_m * freq / 1000) );
                        
-                       //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
                        //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                        
-                       double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 1] + receiver_height);
+                       double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
                        double d1 = j * itm_elev[1];
-                       if ((itm_elev[2] + transmitter_height) > ( itm_elev[(int)itm_elev[0] + 1] + receiver_height) ) {
+                       if ((itm_elev[2] + transmitter_height) > ( itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) {
                                d1 = (itm_elev[0] - j) * itm_elev[1];
                        }
                        double ray_height = (grad * d1) + min_elev;
-                       //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
+                       
                        double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
                        double intrusion = fabs(clearance);
-                       //cerr << "Clutter:: clearance: " << clearance << endl;
+                       
                        if (clearance >= 0) {
                                // no losses
                        }
                        else if (clearance < 0 && (intrusion < clutter_height)) {
                                
-                               clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
+                               clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
                        }
                        else if (clearance < 0 && (intrusion > clutter_height)) {
-                               clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
+                               clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
                        }
                        else {
                                // no losses
@@ -462,44 +456,45 @@ void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm
        else if (p_mode == 1) {         // diffraction
                
                if (horizons[1] == 0.0) {       //      single horizon: same as above, except pass twice using the highest point
-                       int num_points_1st = (int)floor( horizons[0] * (double)itm_elev[0] / distance_m ); 
-                       int num_points_2nd = (int)floor( (distance_m - horizons[0]) * (double)itm_elev[0] / distance_m ); 
+                       int num_points_1st = (int)floor( horizons[0] * itm_elev[0]/ distance_m ); 
+                       int num_points_2nd = (int)ceil( (distance_m - horizons[0]) * itm_elev[0] / distance_m ); 
+                       //cerr << "Diffraction 1 horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << endl;
                        int last = 1;
                        /** perform the first pass */
                        int mat = 0;
-                       int j=1; // first point is TX elevation, 2nd is obstruction elevation
-                       for (int k=3;k < num_points_1st ;k++) {
-                               
+                       int j=1; 
+                       for (int k=3;k < num_points_1st + 2;k++) {
+                               if (num_points_1st < 1)
+                                       break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
                                get_material_properties(materials[mat], clutter_height, clutter_density);
-                               //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                               double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 1] + clutter_height) / distance_m;
+                               
+                               double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
                                // First Fresnel radius
-                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / (  num_points_1st * itm_elev[1] * freq / 1000) );
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) );
                                
-                               //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
-                               double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 1] + clutter_height);
+                               double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
                                double d1 = j * itm_elev[1];
-                               if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 1] + clutter_height) ) {
+                               if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
                                        d1 = (num_points_1st - j) * itm_elev[1];
                                }
                                double ray_height = (grad * d1) + min_elev;
-                               //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
+                               
                                double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
                                double intrusion = fabs(clearance);
-                               //cerr << "Clutter:: clearance: " << clearance << endl;
+                               
                                if (clearance >= 0) {
                                        // no losses
                                }
                                else if (clearance < 0 && (intrusion < clutter_height)) {
                                        
-                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
+                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
                                }
                                else if (clearance < 0 && (intrusion > clutter_height)) {
-                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
+                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
                                }
                                else {
                                        // no losses
@@ -510,91 +505,92 @@ void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm
                        }
                        
                        /** and the second pass */
-                       
-                       int l =1; // first point is diffraction edge, 2nd the RX elevation
-                       for (int k=last+1;k < num_points_2nd ;k++) {
-                               
+                       mat +=1;
+                       j =1; // first point is diffraction edge, 2nd the RX elevation
+                       for (int k=last+2;k < (int)(itm_elev[0]) + 2;k++) {
+                               if (num_points_2nd < 1)
+                                       break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
                                get_material_properties(materials[mat], clutter_height, clutter_density);
-                               //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                               double grad = fabs(itm_elev[last] + clutter_height - itm_elev[(int)itm_elev[0] + 1] + receiver_height) / distance_m;
+                               
+                               double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
                                // First Fresnel radius
-                               double frs_rad = 548 * sqrt( (l * itm_elev[1] * (num_points_2nd - l) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
                                
-                               //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
-                               double min_elev = SGMiscd::min(itm_elev[last] + clutter_height, itm_elev[(int)itm_elev[0] + 1] + receiver_height);
-                               double d1 = l * itm_elev[1];
-                               if ( (itm_elev[last] + clutter_height) > (itm_elev[(int)itm_elev[0] + 1] + receiver_height) ) { 
-                                       d1 = (num_points_2nd - l) * itm_elev[1];
+                               double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
+                               double d1 = j * itm_elev[1];
+                               if ( (itm_elev[last+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { 
+                                       d1 = (num_points_2nd - j) * itm_elev[1];
                                }
                                double ray_height = (grad * d1) + min_elev;
-                               //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
+                               
                                double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
                                double intrusion = fabs(clearance);
-                               //cerr << "Clutter:: clearance: " << clearance << endl;
+                               
                                if (clearance >= 0) {
                                        // no losses
                                }
                                else if (clearance < 0 && (intrusion < clutter_height)) {
                                        
-                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
+                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
                                }
                                else if (clearance < 0 && (intrusion > clutter_height)) {
-                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
+                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
                                }
                                else {
                                        // no losses
                                }
                                j++;
-                               l++;
                                mat++;
                        }
                        
                }
                else {  // double horizon: same as single horizon, except there are 3 segments
                        
-                       int num_points_1st = (int)floor( horizons[0] * (double)itm_elev[0] / distance_m ); 
-                       int num_points_2nd = (int)floor( (horizons[1] - horizons[0]) * (double)itm_elev[0] / distance_m ); 
-                       int num_points_3rd = (int)floor( (distance_m - horizons[1]) * (double)itm_elev[0] / distance_m ); 
+                       int num_points_1st = (int)floor( horizons[0] * itm_elev[0] / distance_m ); 
+                       int num_points_2nd = (int)floor(horizons[1] * itm_elev[0] / distance_m ); 
+                       int num_points_3rd = (int)itm_elev[0] - num_points_1st - num_points_2nd; 
+                       //cerr << "Double horizon:: horizon1: " << horizons[0] << " horizon2: " << horizons[1] << " distance: " << distance_m << endl;
+                       //cerr << "Double horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << " points3: " << num_points_3rd << endl;
                        int last = 1;
                        /** perform the first pass */
                        int mat = 0;
                        int j=1; // first point is TX elevation, 2nd is obstruction elevation
-                       for (int k=3;k < num_points_1st ;k++) {
-                               
+                       for (int k=3;k < num_points_1st +2;k++) {
+                               if (num_points_1st < 1)
+                                       break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
                                get_material_properties(materials[mat], clutter_height, clutter_density);
-                               //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                               double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 1] + clutter_height) / distance_m;
+                               
+                               double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
                                // First Fresnel radius
                                double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / (  num_points_1st * itm_elev[1] * freq / 1000) );
                                
-                               //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
-                               double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 1] + clutter_height);
+                               double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
                                double d1 = j * itm_elev[1];
-                               if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 1] + clutter_height) ) {
+                               if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
                                        d1 = (num_points_1st - j) * itm_elev[1];
                                }
                                double ray_height = (grad * d1) + min_elev;
-                               //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
+                               
                                double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
                                double intrusion = fabs(clearance);
-                               //cerr << "Clutter:: clearance: " << clearance << endl;
+                               
                                if (clearance >= 0) {
                                        // no losses
                                }
                                else if (clearance < 0 && (intrusion < clutter_height)) {
                                        
-                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
+                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
                                }
                                else if (clearance < 0 && (intrusion > clutter_height)) {
-                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
+                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
                                }
                                else {
                                        // no losses
@@ -602,95 +598,94 @@ void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm
                                j++;
                                last = k;
                        }
-                       
+                       mat +=1;
                        /** and the second pass */
-                       
-                       int l =1; // first point is 1st obstruction elevation, 2nd is 2nd obstruction elevation
-                       for (int k=last;k < num_points_2nd ;k++) {
-                               
+                       int last2=1;
+                       j =1; // first point is 1st obstruction elevation, 2nd is 2nd obstruction elevation
+                       for (int k=last+2;k < num_points_1st + num_points_2nd +2;k++) {
+                               if (num_points_2nd < 1)
+                                       break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
                                get_material_properties(materials[mat], clutter_height, clutter_density);
-                               //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                               double grad = fabs(itm_elev[last] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 1] + clutter_height) / distance_m;
+                               
+                               double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) / distance_m;
                                // First Fresnel radius
-                               double frs_rad = 548 * sqrt( (l * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
                                
-                               //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
-                               double min_elev = SGMiscd::min(itm_elev[last] + clutter_height, itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height);
-                               double d1 = l * itm_elev[1];
-                               if ( (itm_elev[last] + clutter_height) > (itm_elev[num_points_1st + num_points_2nd + 1] + clutter_height) ) { 
-                                       d1 = (num_points_2nd - l) * itm_elev[1];
+                               double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[num_points_1st + num_points_2nd +2] + clutter_height);
+                               double d1 = j * itm_elev[1];
+                               if ( (itm_elev[last+1] + clutter_height) > (itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) ) { 
+                                       d1 = (num_points_2nd - j) * itm_elev[1];
                                }
                                double ray_height = (grad * d1) + min_elev;
-                               //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
+                               
                                double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
                                double intrusion = fabs(clearance);
-                               //cerr << "Clutter:: clearance: " << clearance << endl;
+                               
                                if (clearance >= 0) {
                                        // no losses
                                }
                                else if (clearance < 0 && (intrusion < clutter_height)) {
                                        
-                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
+                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
                                }
                                else if (clearance < 0 && (intrusion > clutter_height)) {
-                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
+                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
                                }
                                else {
                                        // no losses
                                }
                                j++;
-                               l++;
                                mat++;
-                               last = k;
+                               last2 = k;
                        }
                        
                        /** third and final pass */
-                       
-                       int m =1; // first point is 2nd obstruction elevation, 3rd is RX elevation
-                       for (int k=last;k < num_points_3rd ;k++) {
-                               
+                       mat +=1;
+                       j =1; // first point is 2nd obstruction elevation, 3rd is RX elevation
+                       for (int k=last2+2;k < (int)itm_elev[0] + 2;k++) {
+                               if (num_points_3rd < 1)
+                                       break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
                                get_material_properties(materials[mat], clutter_height, clutter_density);
-                               //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                               double grad = fabs(itm_elev[last] + clutter_height - itm_elev[(int)itm_elev[0] + 1] + receiver_height) / distance_m;
+                               
+                               double grad = fabs(itm_elev[last2+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
                                // First Fresnel radius
-                               double frs_rad = 548 * sqrt( (m * itm_elev[1] * (num_points_3rd - m) * itm_elev[1] / 1000000) / (  num_points_3rd * itm_elev[1] * freq / 1000) );
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_3rd - j) * itm_elev[1] / 1000000) / (  num_points_3rd * itm_elev[1] * freq / 1000) );
+                               
                                
-                               //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
-                               double min_elev = SGMiscd::min(itm_elev[last] + clutter_height, itm_elev[(int)itm_elev[0] + 1] + receiver_height);
-                               double d1 = m * itm_elev[1];
-                               if ( (itm_elev[last] + clutter_height) > (itm_elev[(int)itm_elev[0] + 1] + receiver_height) ) { 
-                                       d1 = (num_points_3rd - m) * itm_elev[1];
+                               double min_elev = SGMiscd::min(itm_elev[last2+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
+                               double d1 = j * itm_elev[1];
+                               if ( (itm_elev[last2+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { 
+                                       d1 = (num_points_3rd - j) * itm_elev[1];
                                }
                                double ray_height = (grad * d1) + min_elev;
-                               //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
+                               
                                double clearance = ray_height - (itm_elev[k] + clutter_height) - frs_rad * 8/10;                
                                double intrusion = fabs(clearance);
-                               //cerr << "Clutter:: clearance: " << clearance << endl;
+                               
                                if (clearance >= 0) {
                                        // no losses
                                }
                                else if (clearance < 0 && (intrusion < clutter_height)) {
                                        
-                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * freq/100;
+                                       clutter_loss += clutter_density * (intrusion / (frs_rad * 2) ) * (freq/100) * (itm_elev[1]/100);
                                }
                                else if (clearance < 0 && (intrusion > clutter_height)) {
-                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * freq/100;
+                                       clutter_loss += clutter_density * (clutter_height / (frs_rad * 2 ) ) * (freq/100) * (itm_elev[1]/100);
                                }
                                else {
                                        // no losses
                                }
                                j++;
-                               m++;
                                mat++;
-                               last = k+1;
+                               
                        }
                        
                }
@@ -826,10 +821,9 @@ double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, i
                frq_mhz = freq;
        double dbloss;
        double tx_pow = _transmitter_power;
-       double ant_gain = _antenna_gain;
+       double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
        double signal = 0.0;
-       double ATC_HAAT = 30.0;
-       double Aircraft_HAAT = 5.0;
+       
        double sender_alt_ft,sender_alt;
        double transmitter_height=0.0;
        double receiver_height=0.0;
@@ -838,13 +832,8 @@ double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, i
        double own_alt_ft = fgGetDouble("/position/altitude-ft");
        double own_alt= own_alt_ft * SG_FEET_TO_METER;
        
-       if(transmission_type == 1)
-               tx_pow = _transmitter_power + 6.0;
-
-       if((transmission_type == 1) || (transmission_type == 3))
-               ant_gain = _antenna_gain + 3.0; //pilot plane's antenna gain + ground station antenna gain
        
-       double link_budget = tx_pow - _receiver_sensitivity + ant_gain; 
+       double link_budget = tx_pow - _receiver_sensitivity - _rx_line_losses - _tx_line_losses + ant_gain;     
 
        //cerr << "ITM:: pilot Lat: " << own_lat << ", Lon: " << own_lon << ", Alt: " << own_alt << endl;
        
@@ -860,10 +849,10 @@ double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, i
        
        double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
        
-       if(transmission_type == 1) 
-               transmitter_height += ATC_HAAT;
-       else
-               transmitter_height += Aircraft_HAAT;
+       
+       transmitter_height += _tx_antenna_height;
+       receiver_height += _rx_antenna_height;
+       
        
        /** radio horizon calculation with wave bending k=4/3 */
        double receiver_horizon = 4.12 * sqrt(receiver_height);