X-Git-Url: https://git.mxchange.org/?a=blobdiff_plain;f=src%2FAIModel%2FAIBallistic.cxx;h=16b15fe1d93f3aec36cb81a45ad6631c09a3398c;hb=2a674c76fa36d7b05a943610e13660ea031604eb;hp=6ade9f411e27c63e232f3dcbc6016a758966bc25;hpb=7aee6b0a605f21d99fbd1d94f05962132dd437bd;p=flightgear.git diff --git a/src/AIModel/AIBallistic.cxx b/src/AIModel/AIBallistic.cxx index 6ade9f411..16b15fe1d 100644 --- a/src/AIModel/AIBallistic.cxx +++ b/src/AIModel/AIBallistic.cxx @@ -3,7 +3,7 @@ // Written by David Culp, started November 2003. // - davidculp2@comcast.net // -// With major additions by Mathias Froehlich & Vivian Meazza 2004-2007 +// With major additions by Mathias Froehlich & Vivian Meazza 2004-2008 // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as @@ -23,33 +23,51 @@ # include #endif -#include #include -#include #include +#include #include #include "AIBallistic.hxx" -const double FGAIBallistic::slugs_to_kgs = 14.5939029372; +#include
+ +using namespace simgear; -FGAIBallistic::FGAIBallistic() : - FGAIBase(otBallistic), - _elevation(0), - _aero_stabilised(false), - _drag_area(0.007), - _life_timer(0.0), - _gravity(32), - _buoyancy(0), - _random(false), - _ht_agl_ft(0), - _load_resistance(0), - _solid(false), - _report_collision(false), - _report_impact(false), - _impact_report_node(fgGetNode("/ai/models/model-impact", true)), - _external_force(false) +const double FGAIBallistic::slugs_to_kgs = 14.5939029372; +const double FGAIBallistic::slugs_to_lbs = 32.1740485564; + +FGAIBallistic::FGAIBallistic(object_type ot) : +FGAIBase(ot), +_height(0.0), +_speed(0), +_ht_agl_ft(0.0), +_azimuth(0.0), +_elevation(0.0), +_rotation(0.0), +hs(0), +_elapsed_time(0), +_aero_stabilised(false), +_drag_area(0.007), +_life_timer(0.0), +_gravity(32.1740485564), +_buoyancy(0), +_wind(true), +_mass(0), +_random(false), +_load_resistance(0), +_solid(false), +_force_stabilised(false), +_slave_to_ac(false), +_slave_load_to_ac(false), +_contents_lb(0), +_report_collision(false), +_report_impact(false), +_external_force(false), +_report_expiry(false), +_impact_report_node(fgGetNode("/ai/models/model-impact", true)), +_old_height(0) { no_roll = false; @@ -59,79 +77,229 @@ FGAIBallistic::~FGAIBallistic() { } void FGAIBallistic::readFromScenario(SGPropertyNode* scFileNode) { - if (!scFileNode) + if (!scFileNode){ return; + } FGAIBase::readFromScenario(scFileNode); + //setPath(scFileNode->getStringValue("model", "Models/Geometry/rocket.ac")); + setRandom(scFileNode->getBoolValue("random", false)); setAzimuth(scFileNode->getDoubleValue("azimuth", 0.0)); - setElevation(scFileNode->getDoubleValue("elevation", 0.0)); + setElevation(scFileNode->getDoubleValue("elevation", 0)); setDragArea(scFileNode->getDoubleValue("eda", 0.007)); setLife(scFileNode->getDoubleValue("life", 900.0)); setBuoyancy(scFileNode->getDoubleValue("buoyancy", 0)); - setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0)); - setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0)); + //setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0)); + //setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0)); setWind(scFileNode->getBoolValue("wind", false)); setRoll(scFileNode->getDoubleValue("roll", 0.0)); setCd(scFileNode->getDoubleValue("cd", 0.029)); - setMass(scFileNode->getDoubleValue("mass", 0.007)); - setStabilisation(scFileNode->getBoolValue("aero_stabilized", false)); + //setMass(scFileNode->getDoubleValue("mass", 0.007)); + setWeight(scFileNode->getDoubleValue("weight", 0.25)); + setStabilisation(scFileNode->getBoolValue("aero-stabilised", false)); setNoRoll(scFileNode->getBoolValue("no-roll", false)); - setRandom(scFileNode->getBoolValue("random", false)); setImpact(scFileNode->getBoolValue("impact", false)); + setExpiry(scFileNode->getBoolValue("expiry", false)); + setCollision(scFileNode->getBoolValue("collision", false)); setImpactReportNode(scFileNode->getStringValue("impact-reports")); - setName(scFileNode->getStringValue("name", "Bomb")); + setName(scFileNode->getStringValue("name", "Rocket")); setFuseRange(scFileNode->getDoubleValue("fuse-range", 0.0)); setSMPath(scFileNode->getStringValue("submodel-path", "")); setSubID(scFileNode->getIntValue("SubID", 0)); + setExternalForce(scFileNode->getBoolValue("external-force", false)); + setForcePath(scFileNode->getStringValue("force-path", "")); + setForceStabilisation(scFileNode->getBoolValue("force-stabilised", false)); + setXoffset(scFileNode->getDoubleValue("x-offset", 0.0)); + setYoffset(scFileNode->getDoubleValue("y-offset", 0.0)); + setZoffset(scFileNode->getDoubleValue("z-offset", 0.0)); + setPitchoffset(scFileNode->getDoubleValue("pitch-offset", 0.0)); + setRolloffset(scFileNode->getDoubleValue("roll-offset", 0.0)); + setYawoffset(scFileNode->getDoubleValue("yaw-offset", 0.0)); + setGroundOffset(scFileNode->getDoubleValue("ground-offset", 0.0)); + setLoadOffset(scFileNode->getDoubleValue("load-offset", 0.0)); + setSlaved(scFileNode->getBoolValue("slaved", false)); + setSlavedLoad(scFileNode->getBoolValue("slaved-load", false)); + setContentsPath(scFileNode->getStringValue("contents")); + setParentName(scFileNode->getStringValue("parent")); } bool FGAIBallistic::init(bool search_in_AI_path) { FGAIBase::init(search_in_AI_path); + _impact_reported = false; + _collision_reported = false; + _expiry_reported = false; + + _impact_lat = 0; + _impact_lon = 0; + _impact_elev = 0; + _impact_hdg = 0; + _impact_pitch = 0; + _impact_roll = 0; + _impact_speed = 0; + + invisible = false; + + _elapsed_time += (sg_random() * 100); + props->setStringValue("material/name", ""); props->setStringValue("name", _name.c_str()); - props->setStringValue("submodels/path", _submodel.c_str()); + props->setStringValue("submodels/path", _path.c_str()); + + if (_slave_to_ac){ + props->setStringValue("force/path", _force_path.c_str()); + props->setStringValue("contents/path", _contents_path.c_str()); + } + + //if(_parent != ""){ + // setParentNode(); + //} + + //setParentNodes(_selected_ac); + + //props->setStringValue("vector/path", _vector_path.c_str()); // start with high value so that animations don't trigger yet _ht_agl_ft = 1e10; hdg = _azimuth; pitch = _elevation; roll = _rotation; + Transform(); + if(_parent != ""){ + setParentNode(); + } + + setParentNodes(_selected_ac); + return true; } void FGAIBallistic::bind() { // FGAIBase::bind(); + props->tie("sim/time/elapsed-sec", SGRawValueMethods(*this, &FGAIBallistic::_getTime)); - props->tie("material/load-resistance", - SGRawValuePointer(&_load_resistance)); + //props->tie("mass-slug", + // SGRawValueMethods(*this, + // &FGAIBallistic::getMass)); + props->tie("material/solid", - SGRawValuePointer(&_solid)); + SGRawValuePointer(&_solid)); props->tie("altitude-agl-ft", - SGRawValuePointer(&_ht_agl_ft)); + SGRawValuePointer(&_ht_agl_ft)); + props->tie("controls/slave-to-ac", + SGRawValueMethods + (*this, &FGAIBallistic::getSlaved, &FGAIBallistic::setSlaved)); + props->tie("controls/invisible", + SGRawValuePointer(&invisible)); + + if(_external_force || _slave_to_ac){ + props->tie("controls/force_stabilized", + SGRawValuePointer(&_force_stabilised)); + props->tie("position/global-x", + SGRawValueMethods(*this, &FGAIBase::_getCartPosX, 0)); + props->tie("position/global-y", + SGRawValueMethods(*this, &FGAIBase::_getCartPosY, 0)); + props->tie("position/global-z", + SGRawValueMethods(*this, &FGAIBase::_getCartPosZ, 0)); + props->tie("velocities/vertical-speed-fps", + SGRawValuePointer(&vs)); + props->tie("velocities/true-airspeed-kt", + SGRawValuePointer(&speed)); + props->tie("velocities/horizontal-speed-fps", + SGRawValuePointer(&hs)); + props->tie("position/altitude-ft", + SGRawValueMethods(*this, &FGAIBase::_getElevationFt, &FGAIBase::_setAltitude)); + props->tie("position/latitude-deg", + SGRawValueMethods(*this, &FGAIBase::_getLatitude, &FGAIBase::_setLatitude)); + props->tie("position/longitude-deg", + SGRawValueMethods(*this, &FGAIBase::_getLongitude, &FGAIBase::_setLongitude)); + props->tie("orientation/hdg-deg", + SGRawValuePointer(&hdg)); + props->tie("orientation/pitch-deg", + SGRawValuePointer(&pitch)); + props->tie("orientation/roll-deg", + SGRawValuePointer(&roll)); + props->tie("controls/slave-load-to-ac", + SGRawValueMethods + (*this, &FGAIBallistic::getSlavedLoad, &FGAIBallistic::setSlavedLoad)); + props->tie("position/load-offset", + SGRawValueMethods + (*this, &FGAIBallistic::getLoadOffset, &FGAIBallistic::setLoadOffset)); + props->tie("load/distance-to-hitch-ft", + SGRawValueMethods + (*this, &FGAIBallistic::getDistanceToHitch)); + props->tie("load/elevation-to-hitch-deg", + SGRawValueMethods + (*this, &FGAIBallistic::getElevToHitch)); + props->tie("load/bearing-to-hitch-deg", + SGRawValueMethods + (*this, &FGAIBallistic::getBearingToHitch)); + props->tie("material/load-resistance", + SGRawValuePointer(&_load_resistance)); + } + } void FGAIBallistic::unbind() { - // FGAIBase::unbind(); +// FGAIBase::unbind(); + props->untie("sim/time/elapsed-sec"); - props->untie("material/load-resistance"); + props->untie("mass-slug"); props->untie("material/solid"); props->untie("altitude-agl-ft"); + props->untie("controls/slave-to-ac"); + props->untie("controls/invisible"); + + if(_external_force || _slave_to_ac){ + props->untie("position/global-y"); + props->untie("position/global-x"); + props->untie("position/global-z"); + props->untie("velocities/vertical-speed-fps"); + props->untie("velocities/true-airspeed-kt"); + props->untie("velocities/horizontal-speed-fps"); + props->untie("position/altitude-ft"); + props->untie("position/latitude-deg"); + props->untie("position/longitude-deg"); + props->untie("position/ht-agl-ft"); + props->untie("orientation/hdg-deg"); + props->untie("orientation/pitch-deg"); + props->untie("orientation/roll-deg"); + props->untie("controls/force_stabilized"); + props->untie("position/load-offset"); + props->untie("load/distance-to-hitch-ft"); + props->untie("load/elevation-to-hitch-deg"); + props->untie("load/bearing-to-hitch-deg"); + props->untie("material/load-resistance"); + } } void FGAIBallistic::update(double dt) { FGAIBase::update(dt); - Run(dt); - Transform(); + _setUserPos(); + + if (_slave_to_ac){ + slaveToAC(dt); + Transform(); + } else if (!invisible){ + Run(dt); + Transform(); + } + } void FGAIBallistic::setAzimuth(double az) { - hdg = _azimuth = az; + + if (_random) + hdg = _azimuth = (az - 5 ) + (10 * sg_random()); + else + hdg = _azimuth = az; + + //cout << _name << " init hdg " << hdg << " random " << _random << endl; } void FGAIBallistic::setElevation(double el) { @@ -139,13 +307,17 @@ void FGAIBallistic::setElevation(double el) { } void FGAIBallistic::setRoll(double rl) { - _rotation = rl; + roll = _rotation = rl; } void FGAIBallistic::setStabilisation(bool val) { _aero_stabilised = val; } +void FGAIBallistic::setForceStabilisation(bool val) { + _force_stabilised = val; +} + void FGAIBallistic::setNoRoll(bool nr) { no_roll = nr; } @@ -155,7 +327,12 @@ void FGAIBallistic::setDragArea(double a) { } void FGAIBallistic::setLife(double seconds) { - life = seconds; + + if (_random){ + life = seconds * _randomness + (seconds * (1 -_randomness) * sg_random()); + //cout << "life " << life << endl; + } else + life = seconds; } void FGAIBallistic::setBuoyancy(double fpss) { @@ -182,6 +359,14 @@ void FGAIBallistic::setMass(double m) { _mass = m; } +void FGAIBallistic::setWeight(double w) { + _weight_lb = w; +} + +void FGAIBallistic::setRandomness(double r) { + _randomness = r; +} + void FGAIBallistic::setRandom(bool r) { _random = r; } @@ -194,6 +379,10 @@ void FGAIBallistic::setCollision(bool c) { _report_collision = c; } +void FGAIBallistic::setExpiry(bool e) { + _report_expiry = e; +} + void FGAIBallistic::setExternalForce(bool f) { _external_force = f; } @@ -204,12 +393,9 @@ void FGAIBallistic::setImpactReportNode(const string& path) { _impact_report_node = fgGetNode(path.c_str(), true); } -void FGAIBallistic::setName(const string& n) { - _name = n; -} - void FGAIBallistic::setSMPath(const string& s) { - _submodel = s; + _path = s; + //cout << "submodel path " << _path << endl; } void FGAIBallistic::setFuseRange(double f) { @@ -218,13 +404,112 @@ void FGAIBallistic::setFuseRange(double f) { void FGAIBallistic::setSubID(int i) { _subID = i; - //cout << "sub id " << _subID << " name " << _name << endl; } void FGAIBallistic::setSubmodel(const string& s) { _submodel = s; } +void FGAIBallistic::setGroundOffset(double g) { + _ground_offset = g; +} + +void FGAIBallistic::setLoadOffset(double l) { + _load_offset = l; +} + +double FGAIBallistic::getLoadOffset() const { + return _load_offset; +} + +void FGAIBallistic::setSlaved(bool s) { + _slave_to_ac = s; +} + +void FGAIBallistic::setContentsPath(const string& path) { + + _contents_path = path; + + if (!path.empty()) { + _contents_node = fgGetNode(path.c_str(), true); + } +} + +void FGAIBallistic::setContentsNode(SGPropertyNode_ptr node) { + + if (node != 0) { + _contents_node = node; + _contents_path = _contents_node->getDisplayName(); + } +} + +void FGAIBallistic::setParentNodes(SGPropertyNode_ptr node) { + + if (node != 0) { + _pnode = node; + _p_pos_node = _pnode->getChild("position", 0, true); + _p_lat_node = _p_pos_node->getChild("latitude-deg", 0, true); + _p_lon_node = _p_pos_node->getChild("longitude-deg", 0, true); + _p_alt_node = _p_pos_node->getChild("altitude-ft", 0, true); + _p_agl_node = _p_pos_node->getChild("altitude-agl-ft", 0, true); + + + _p_ori_node = _pnode->getChild("orientation", 0, true); + _p_pch_node = _p_ori_node->getChild("pitch-deg", 0, true); + _p_rll_node = _p_ori_node->getChild("roll-deg", 0, true); + _p_hdg_node = _p_ori_node->getChild("true-heading-deg",0, true); + + _p_vel_node = _pnode->getChild("velocities", 0, true); + _p_spd_node = _p_vel_node->getChild("true-airspeed-kt", 0, true); + } + +} + +void FGAIBallistic::setParentPos() { + + if (_pnode != 0) { + //cout << "set parent pos" << endl; + + double lat = _p_lat_node->getDoubleValue(); + double lon = _p_lon_node->getDoubleValue(); + double alt = _p_alt_node->getDoubleValue(); + + _parentpos.setLongitudeDeg(lon); + _parentpos.setLatitudeDeg(lat); + _parentpos.setElevationFt(alt); + + } + +} + +bool FGAIBallistic::getSlaved() const { + return _slave_to_ac; +} + +double FGAIBallistic::getMass() const { + return _mass; +} + +double FGAIBallistic::getContents() { + if(_contents_node){ + _contents_lb = _contents_node->getChild("level-lbs",0,1)->getDoubleValue(); + } + return _contents_lb; +} + +void FGAIBallistic::setContents(double c) { + if(_contents_node) + _contents_lb = _contents_node->getChild("level-gal_us",0,1)->setDoubleValue(c); +} + +void FGAIBallistic::setSlavedLoad(bool l) { + _slave_load_to_ac = l; +} + +bool FGAIBallistic::getSlavedLoad() const { + return _slave_load_to_ac; +} + void FGAIBallistic::setForcePath(const string& p) { _force_path = p; if (!_force_path.empty()) { @@ -235,15 +520,169 @@ void FGAIBallistic::setForcePath(const string& p) { } } +bool FGAIBallistic::getHtAGL(double start){ + + if (getGroundElevationM(SGGeod::fromGeodM(pos, start), + _elevation_m, &_material)) { + _ht_agl_ft = pos.getElevationFt() - _elevation_m * SG_METER_TO_FEET; + + if (_material) { + const vector& names = _material->get_names(); + _solid = _material->get_solid(); + _load_resistance = _material->get_load_resistance(); + _frictionFactor =_material->get_friction_factor(); + + if (!names.empty()) + props->setStringValue("material/name", names[0].c_str()); + else + props->setStringValue("material/name", ""); + + _mat_name = names[0]; + + //cout << "material " << _mat_name + //<< " solid " << _solid + //<< " load " << _load_resistance + //<< " frictionFactor " << _frictionFactor + //<< endl; + + } + + return true; + } else { + return false; + } + +} + +double FGAIBallistic::getRecip(double az){ + // calculate the reciprocal of the input azimuth + if(az - 180 < 0){ + return az + 180; + } else { + return az - 180; + } +} + +void FGAIBallistic::setPch(double e, double dt, double coeff){ + double c = dt / (coeff + dt); + pitch = (e * c) + (pitch * (1 - c)); +} + +void FGAIBallistic::setBnk(double r, double dt, double coeff){ + double c = dt / (coeff + dt); + roll = (r * c) + (roll * (1 - c)); +} + +void FGAIBallistic::setSpd(double s, double dt, double coeff){ + double c = dt / (coeff + dt); + _speed = (s * c) + (_speed * (1 - c)); +} + +void FGAIBallistic::setHt(double h, double dt, double coeff){ + double c = dt / (coeff + dt); + _height = (h * c) + (_height * (1 - c)); +} + +int FGAIBallistic::setHdg(double tgt_hdg, double dt, double coeff){ + double recip = getRecip(hdg); + double c = dt / (coeff + dt); + //we need to ensure that we turn the short way to the new hdg + if (tgt_hdg < recip && tgt_hdg < hdg && hdg > 180) { + hdg = ((tgt_hdg + 360) * c) + (hdg * (1 - c)); +// cout << "case 1: right turn" << endl; + } else if (tgt_hdg > recip && tgt_hdg > hdg && hdg <= 180){ + hdg = ((tgt_hdg - 360) * c) + (hdg * (1 - c)); +// cout << "case 2: left turn" << endl; + } else { + hdg = (tgt_hdg * c) + (hdg * (1 - c)); +// cout << "case 4: left turn" << endl; + } + return -1; +} + +double FGAIBallistic::getTgtXOffset() const { + return _tgt_x_offset; +} + +double FGAIBallistic::getTgtYOffset() const { + return _tgt_y_offset; +} + +double FGAIBallistic::getTgtZOffset() const { + return _tgt_z_offset; +} + +void FGAIBallistic::setTgtXOffset(double x){ + _tgt_x_offset = x; +} + +void FGAIBallistic::setTgtYOffset(double y){ + _tgt_y_offset = y; +} + +void FGAIBallistic::setTgtZOffset(double z){ + _tgt_z_offset = z; +} + +void FGAIBallistic::slaveToAC(double dt){ + + double hdg, pch, rll, agl = 0; + + if (_pnode != 0) { + setParentPos(); + hdg = _p_hdg_node->getDoubleValue(); + pch = _p_pch_node->getDoubleValue(); + rll = _p_rll_node->getDoubleValue(); + agl = _p_agl_node->getDoubleValue(); + setOffsetPos(_parentpos, hdg, pch, rll); + setSpeed(_p_spd_node->getDoubleValue()); + }else { + hdg = manager->get_user_heading(); + pch = manager->get_user_pitch(); + rll = manager->get_user_roll(); + agl = manager->get_user_agl(); + setOffsetPos(userpos, hdg, pch, rll); + setSpeed(manager->get_user_speed()); + } + + pos.setLatitudeDeg(_offsetpos.getLatitudeDeg()); + pos.setLongitudeDeg(_offsetpos.getLongitudeDeg()); + pos.setElevationFt(_offsetpos.getElevationFt()); + setHeading(hdg); + setPitch(pch + _pitch_offset); + setBank(rll + _roll_offset); + setOffsetVelocity(dt, pos); + + //update the mass (slugs) + _mass = (_weight_lb + getContents()) / slugs_to_lbs; + + _impact_reported = false; + + //cout << _name << " _mass "<<_mass <<" " << getContents() + //<< " " << getContents() / slugs_to_lbs << " weight " << _weight_lb << endl; + // cout << _name << " update hs " << hs << " vs " << vs << endl; +} + void FGAIBallistic::Run(double dt) { _life_timer += dt; - //cout << "life timer" <<_name <<" " << _life_timer << dt << endl; - if (_life_timer > life) - setDie(true); - //randomise Cd by +- 5% + // if life = -1 the object does not die + if (_life_timer > life && life != -1){ + + if (_report_expiry && !_expiry_reported && !_impact_reported && !_collision_reported){ + //cout<<"AIBallistic: expiry"<< endl; + handle_expiry(); + } else + setDie(true); + + } + + //set the contents in the appropriate tank or other property in the parent to zero + setContents(0); + + //randomise Cd by +- 10% if (_random) - _Cd = _Cd * 0.95 + (0.05 * sg_random()); + _Cd = _Cd * 0.90 + (0.10 * sg_random()); // Adjust Cd by Mach number. The equations are based on curves // for a conventional shell/bullet (no boat-tail). @@ -256,7 +695,8 @@ void FGAIBallistic::Run(double dt) { else Cdm = 0.2965 * pow(Mach, -1.1506) + _Cd; - //cout << " Mach , " << Mach << " , Cdm , " << Cdm << " ballistic speed kts //"<< speed << endl; + //cout <<_name << " Mach " << Mach << " Cdm " << Cdm + // << " ballistic speed kts "<< speed << endl; // drag = Cd * 0.5 * rho * speed * speed * drag_area; // rho is adjusted for altitude in void FGAIBase::update, @@ -270,7 +710,7 @@ void FGAIBallistic::Run(double dt) { speed = 0.0; double speed_fps = speed * SG_KT_TO_FPS; - double hs; + //double hs; // calculate vertical and horizontal speed components if (speed == 0.0) { @@ -292,125 +732,197 @@ void FGAIBallistic::Run(double dt) { if (!_wind) { _wind_from_north = 0; _wind_from_east = 0; + } else { + _wind_from_north = manager->get_wind_from_north(); + _wind_from_east = manager->get_wind_from_east(); } - // convert wind speed (fps) to degrees lat/lon per second - double wind_speed_from_north_deg_sec = _wind_from_north / ft_per_deg_lat; - double wind_speed_from_east_deg_sec = _wind_from_east / ft_per_deg_lon; - //calculate velocity due to external force double force_speed_north_deg_sec = 0; double force_speed_east_deg_sec = 0; - double vs_force_fps = 0; +// double vs_force_fps = 0; double hs_force_fps = 0; double v_force_acc_fpss = 0; double force_speed_north_fps = 0; double force_speed_east_fps = 0; + double h_force_lbs = 0; + double normal_force_lbs = 0; + double normal_force_fpss = 0; + double static_friction_force_lbs = 0; + double dynamic_friction_force_lbs = 0; + double friction_force_speed_north_fps = 0; + double friction_force_speed_east_fps = 0; + double friction_force_speed_north_deg_sec = 0; + double friction_force_speed_east_deg_sec = 0; + double force_elevation_deg = 0; if (_external_force) { + //cout << _name << " external force" << endl; + SGPropertyNode *n = fgGetNode(_force_path.c_str(), true); double force_lbs = n->getChild("force-lb", 0, true)->getDoubleValue(); - double force_elevation_deg = n->getChild("force-elevation-deg", 0, true)->getDoubleValue(); + force_elevation_deg = n->getChild("force-elevation-deg", 0, true)->getDoubleValue(); double force_azimuth_deg = n->getChild("force-azimuth-deg", 0, true)->getDoubleValue(); - + //resolve force into vertical and horizontal components: double v_force_lbs = force_lbs * sin( force_elevation_deg * SG_DEGREES_TO_RADIANS ); - double h_force_lbs = force_lbs * cos( force_elevation_deg * SG_DEGREES_TO_RADIANS ); + h_force_lbs = force_lbs * cos( force_elevation_deg * SG_DEGREES_TO_RADIANS ); + + //ground interaction + + if (getHtAGL(10000)){ + double deadzone = 0.1; + + if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid){ + normal_force_lbs = (_mass * slugs_to_lbs) - v_force_lbs; + + if ( normal_force_lbs < 0 ) + normal_force_lbs = 0; + + pos.setElevationFt(0 + _ground_offset); + if (vs < 0) + vs = -vs * 0.5; + + // calculate friction + // we assume a static Coefficient of Friction (mu) of 0.62 (wood on concrete) + double mu = 0.62; + + static_friction_force_lbs = mu * normal_force_lbs * _frictionFactor; + + //adjust horizontal force. We assume that a speed of <= 5 fps is static + if (h_force_lbs <= static_friction_force_lbs && hs <= 5){ + h_force_lbs = hs = 0; + speed_north_fps = speed_east_fps = 0; + } else + dynamic_friction_force_lbs = (static_friction_force_lbs * 0.95); + + //ignore wind when on the ground for now + //TODO fix this + _wind_from_north = 0; + _wind_from_east = 0; + + } + + } //acceleration = (force(lbsf)/mass(slugs)) - v_force_acc_fpss = (v_force_lbs/_mass); - double h_force_acc_fpss = (h_force_lbs/_mass); + v_force_acc_fpss = v_force_lbs/_mass; + normal_force_fpss = normal_force_lbs/_mass; + double h_force_acc_fpss = h_force_lbs/_mass; + double dynamic_friction_acc_fpss = dynamic_friction_force_lbs/_mass; // velocity = acceleration * dt hs_force_fps = h_force_acc_fpss * dt; + double friction_force_fps = dynamic_friction_acc_fpss * dt; - //resolve horizontal speed into north and east components: + //resolve horizontal speeds into north and east components: force_speed_north_fps = cos(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps; force_speed_east_fps = sin(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps; + friction_force_speed_north_fps = cos(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps; + friction_force_speed_east_fps = sin(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps; + // convert horizontal speed (fps) to degrees per second - double force_speed_north_deg_sec = force_speed_north_fps / ft_per_deg_lat; - double force_speed_east_deg_sec = force_speed_east_fps / ft_per_deg_lon; - - //recombine the horizontal velocity components - hs = sqrt(((speed_north_fps + force_speed_north_fps) * (speed_north_fps + force_speed_north_fps)) - + ((speed_east_fps + force_speed_east_fps) * (speed_east_fps + force_speed_east_fps))); - - /*cout << "mass " << _mass - << " force " << force_lbs - << " elevation " << force_elevation_deg - << " azimuth " << force_azimuth_deg - << endl; */ - - //cout << " _hs_force_fps " << hs_force_fps - //<< " force_speed_north_fps " << force_speed_north_fps - //<< " force_speed_east_fps " << force_speed_east_fps - //<< " speed_north_fps " << speed_north_fps - //<< " speed_east_fps " << speed_east_fps - //<< endl; + force_speed_north_deg_sec = force_speed_north_fps / ft_per_deg_lat; + force_speed_east_deg_sec = force_speed_east_fps / ft_per_deg_lon; + + friction_force_speed_north_deg_sec = friction_force_speed_north_fps / ft_per_deg_lat; + friction_force_speed_east_deg_sec = friction_force_speed_east_fps / ft_per_deg_lon; } - // set new position - pos.setLatitudeDeg( pos.getLatitudeDeg() - + (speed_north_deg_sec - wind_speed_from_north_deg_sec + force_speed_north_deg_sec) * dt ); - pos.setLongitudeDeg( pos.getLongitudeDeg() - + (speed_east_deg_sec - wind_speed_from_east_deg_sec + force_speed_east_deg_sec) * dt ); + // convert wind speed (fps) to degrees lat/lon per second + double wind_speed_from_north_deg_sec = _wind_from_north / ft_per_deg_lat; + double wind_speed_from_east_deg_sec = _wind_from_east / ft_per_deg_lon; + + //recombine the horizontal velocity components + hs = sqrt(((speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps) + * (speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)) + + ((speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps) + * (speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps))); + + if (hs <= 0.00001) + hs = 0; // adjust vertical speed for acceleration of gravity, buoyancy, and vertical force - //v_force_acc_fpss = 0; - vs -= (_gravity - _buoyancy - v_force_acc_fpss) * dt; + vs -= (_gravity - _buoyancy - v_force_acc_fpss - normal_force_fpss) * dt; + + if (vs <= 0.00001 && vs >= -0.00001) + vs = 0; - // adjust altitude (feet) and set new elevation - altitude_ft += vs * dt; - pos.setElevationFt(altitude_ft); + // set new position + if(_slave_load_to_ac) { + setOffsetPos(pos, + manager->get_user_heading(), + manager->get_user_pitch(), + manager->get_user_roll() + ); + pos.setLatitudeDeg(_offsetpos.getLatitudeDeg()); + pos.setLongitudeDeg(_offsetpos.getLongitudeDeg()); + pos.setElevationFt(_offsetpos.getElevationFt()); + + if (getHtAGL(10000)){ + double deadzone = 0.1; + + if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid){ + pos.setElevationFt(0 + _ground_offset); + } else { + pos.setElevationFt(_offsetpos.getElevationFt() + _load_offset); + } + + } + } else { + pos.setLatitudeDeg( pos.getLatitudeDeg() + + (speed_north_deg_sec - wind_speed_from_north_deg_sec + + force_speed_north_deg_sec + friction_force_speed_north_deg_sec) * dt ); + pos.setLongitudeDeg( pos.getLongitudeDeg() + + (speed_east_deg_sec - wind_speed_from_east_deg_sec + + force_speed_east_deg_sec + friction_force_speed_east_deg_sec) * dt ); + pos.setElevationFt(pos.getElevationFt() + vs * dt); + } + +// cout << _name << " run hs " << hs << " vs " << vs << endl; + + // recalculate total speed + if ( vs == 0 && hs == 0) + speed = 0; + else + speed = sqrt( vs * vs + hs * hs) / SG_KT_TO_FPS; // recalculate elevation and azimuth (velocity vectors) _elevation = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES; - _azimuth = atan2((speed_east_fps + force_speed_east_fps), - (speed_north_fps + force_speed_north_fps)) * SG_RADIANS_TO_DEGREES; + _azimuth = atan2((speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps), + (speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)) + * SG_RADIANS_TO_DEGREES; // rationalise azimuth - if (_azimuth < 0) _azimuth += 360; + if (_azimuth < 0) + _azimuth += 360; if (_aero_stabilised) { // we simulate rotational moment of inertia by using a filter + //cout<< "_aero_stabilised "<< endl; const double coeff = 0.9; - double c = dt / (coeff + dt); - double recip; - - // calculate the recip - if(hdg - 180 < 0){ - recip = hdg + 180; - } else { - recip = hdg - 180; - } - //cout << "recip " << recip << endl; // we assume a symetrical MI about the pitch and yaw axis - pitch = (_elevation * c) + (pitch * (1 - c)); - - //we need to ensure that we turn the short way to the new hdg - if (_azimuth < recip && _azimuth < hdg && hdg > 180) { - //cout << "_azimuth - hdg 1 " << _azimuth << " " << hdg << endl; - hdg = ((_azimuth + 360) * c) + (hdg * (1 - c)); - } else if (_azimuth > recip && _azimuth > hdg && hdg <= 180){ - //cout << "_azimuth - hdg 2 " << _azimuth <<" " << hdg << endl; - hdg = ((_azimuth - 360) * c) + (hdg * (1 - c)); - } else { - //cout << "_azimuth - hdg 3 " << _azimuth <<" " << hdg << endl; - hdg = (_azimuth * c) + (hdg * (1 - c)); - } + setPch(_elevation, dt, coeff); + setHdg(_azimuth, dt, coeff); + } else if (_force_stabilised) { // we simulate rotational moment of inertia by using a filter + //cout<< "_force_stabilised "<< endl; + + const double coeff = 0.9; + double ratio = h_force_lbs/(_mass * slugs_to_lbs); - } + if (ratio > 1) ratio = 1; + if (ratio < -1) ratio = -1; - // recalculate total speed - speed = sqrt( vs * vs + hs * hs) / SG_KT_TO_FPS; + double force_pitch = acos(ratio) * SG_RADIANS_TO_DEGREES; - /*cout << "_elevation " << _elevation - << " pitch " << pitch - <<" _yaw " << _yaw - << " hdg " << hdg - << " speed " << speed - << endl;*/ + if (force_pitch <= force_elevation_deg) + force_pitch = force_elevation_deg; + + // we assume a symetrical MI about the pitch and yaw axis + setPch(force_pitch,dt, coeff); + setHdg(_azimuth, dt, coeff); + } //do impacts and collisions if (_report_impact && !_impact_reported) @@ -420,58 +932,56 @@ void FGAIBallistic::Run(double dt) { handle_collision(); // set destruction flag if altitude less than sea level -1000 - if (altitude_ft < -1000.0) + if (altitude_ft < -1000.0 && life != -1) setDie(true); } // end Run double FGAIBallistic::_getTime() const { - // cout << "life timer 2" << _life_timer << endl; return _life_timer; } void FGAIBallistic::handle_impact() { - double elevation_m; - const SGMaterial* material; // try terrain intersection - if (!globals->get_scenery()->get_elevation_m(pos.getLatitudeDeg(), pos.getLongitudeDeg(), - 10000.0, elevation_m, &material)) - return; + double start = pos.getElevationM() + 10; - if (material) { - const vector names = material->get_names(); - string mat_name; - - if (!names.empty()) - mat_name = names[0].c_str(); - - _solid = material->get_solid(); - _load_resistance = material->get_load_resistance(); - props->setStringValue("material/name", mat_name.c_str()); - //cout << "material " << mat_name << " solid " << _solid << " load " << _load_resistance << endl; - } - - _ht_agl_ft = pos.getElevationFt() - elevation_m * SG_METER_TO_FEET; + if(!getHtAGL(start)) + return; if (_ht_agl_ft <= 0) { SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: terrain impact"); - report_impact(elevation_m); + report_impact(_elevation_m); _impact_reported = true; - // kill the AIObject if there is no subsubmodel - if (_subID == 0) + if (life == -1){ + invisible = true; + } else if (_subID == 0) // kill the AIObject if there is no subsubmodel setDie(true); + } +} + +void FGAIBallistic::handle_expiry() { + + SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: handle_expiry " << pos.getElevationM()); + + report_impact(pos.getElevationM()); + _expiry_reported = true; + + if (life == -1){ + invisible = true; + } else if (_subID == 0){ // kill the AIObject if there is no subsubmodel + setDie(true); } + } void FGAIBallistic::handle_collision() { const FGAIBase *object = manager->calcCollision(pos.getElevationFt(), - pos.getLatitudeDeg(),pos.getLongitudeDeg(), _fuse_range); + pos.getLatitudeDeg(),pos.getLongitudeDeg(), _fuse_range); if (object) { - SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: object hit"); report_impact(pos.getElevationM(), object); _collision_reported = true; } @@ -488,11 +998,14 @@ void FGAIBallistic::report_impact(double elevation, const FGAIBase *object) _impact_roll = roll; SGPropertyNode *n = props->getNode("impact", true); + if (object) n->setStringValue("type", object->getTypeString()); else n->setStringValue("type", "terrain"); + SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: object impact" << _name << " lon " <<_impact_lon); + n->setDoubleValue("longitude-deg", _impact_lon); n->setDoubleValue("latitude-deg", _impact_lat); n->setDoubleValue("elevation-m", _impact_elev); @@ -504,5 +1017,238 @@ void FGAIBallistic::report_impact(double elevation, const FGAIBase *object) _impact_report_node->setStringValue(props->getPath()); } -// end AIBallistic +SGVec3d FGAIBallistic::getCartUserPos() const { + SGVec3d cartUserPos = SGVec3d::fromGeod(userpos); + return cartUserPos; +} + +SGVec3d FGAIBallistic::getCartHitchPos() const{ + + // convert geodetic positions to geocentered + SGVec3d cartuserPos = SGVec3d::fromGeod(userpos); + //SGVec3d cartPos = getCartPos(); + + // Transform to the right coordinate frame, configuration is done in + // the x-forward, y-right, z-up coordinates (feet), computation + // in the simulation usual body x-forward, y-right, z-down coordinates + // (meters) ) + SGVec3d _off(_x_offset * SG_FEET_TO_METER, + _y_offset * SG_FEET_TO_METER, + -_z_offset * SG_FEET_TO_METER); + + // Transform the user position to the horizontal local coordinate system. + SGQuatd hlTrans = SGQuatd::fromLonLat(userpos); + + // and postrotate the orientation of the user model wrt the horizontal + // local frame + hlTrans *= SGQuatd::fromYawPitchRollDeg( + manager->get_user_heading(), + manager->get_user_pitch(), + manager->get_user_roll()); + + // The offset converted to the usual body fixed coordinate system + // rotated to the earth-fixed coordinates axis + SGVec3d off = hlTrans.backTransform(_off); + + // Add the position offset of the user model to get the geocentered position + SGVec3d offsetPos = cartuserPos + off; + + return offsetPos; +} + +void FGAIBallistic::setOffsetPos(SGGeod inpos, double heading, double pitch, double roll){ + // convert the hitch geocentered position to geodetic + SGVec3d cartoffsetPos = getCartOffsetPos(inpos, heading, pitch, roll); + + //SGVec3d cartoffsetPos = getCartHitchPos(); + + //SGGeodesy::SGCartToGeod(cartoffsetPos, hitchpos); + SGGeodesy::SGCartToGeod(cartoffsetPos, _offsetpos); + +} + +double FGAIBallistic::getDistanceToHitch() const { + //calculate the distance load to hitch + SGVec3d carthitchPos = getCartHitchPos(); + SGVec3d cartPos = getCartPos(); + + SGVec3d diff = carthitchPos - cartPos; + double distance = norm(diff); + return distance * SG_METER_TO_FEET; +} + +double FGAIBallistic::getElevToHitch() const { + // now the angle, positive angles are upwards + double distance = getDistanceToHitch() * SG_FEET_TO_METER; + double angle = 0; + double daltM = _offsetpos.getElevationM() - pos.getElevationM(); + + if (fabs(distance) < SGLimits::min()) { + angle = 0; + } else { + double sAngle = daltM/distance; + sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); + angle = SGMiscd::rad2deg(asin(sAngle)); + } + + return angle; +} + +double FGAIBallistic::getBearingToHitch() const { + //calculate the bearing and range of the second pos from the first + double distance = getDistanceToHitch() * SG_FEET_TO_METER; + double az1, az2; + + geo_inverse_wgs_84(pos, _offsetpos, &az1, &az2, &distance); + + return az1; +} + +double FGAIBallistic::getRelBrgHitchToUser() const { + //calculate the relative bearing + double az1, az2, distance; + + geo_inverse_wgs_84(_offsetpos, userpos, &az1, &az2, &distance); + + double rel_brg = az1 - hdg; + + SG_NORMALIZE_RANGE(rel_brg, -180.0, 180.0); + + return rel_brg; +} + +double FGAIBallistic::getElevHitchToUser() const { + + //calculate the distance from the user position + SGVec3d carthitchPos = getCartHitchPos(); + SGVec3d cartuserPos = getCartUserPos(); + + SGVec3d diff = cartuserPos - carthitchPos; + + double distance = norm(diff); + double angle = 0; + + double daltM = userpos.getElevationM() - _offsetpos.getElevationM(); + + // now the angle, positive angles are upwards + if (fabs(distance) < SGLimits::min()) { + angle = 0; + } else { + double sAngle = daltM/distance; + sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); + angle = SGMiscd::rad2deg(asin(sAngle)); + } + + return angle; +} + +void FGAIBallistic::setTgtOffsets(double dt, double coeff){ + double c = dt / (coeff + dt); + + _x_offset = (_tgt_x_offset * c) + (_x_offset * (1 - c)); + _y_offset = (_tgt_y_offset * c) + (_y_offset * (1 - c)); + _z_offset = (_tgt_z_offset * c) + (_z_offset * (1 - c)); +} + + +void FGAIBallistic::calcVSHS(){ + // calculate vertical and horizontal speed components + double speed_fps = speed * SG_KT_TO_FPS; + + if (speed == 0.0) { + hs = vs = 0.0; + } else { + vs = sin( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps; + hs = cos( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps; + } +} + +void FGAIBallistic::calcNE(){ + //resolve horizontal speed into north and east components: + _speed_north_fps = cos(_azimuth / SG_RADIANS_TO_DEGREES) * hs; + _speed_east_fps = sin(_azimuth / SG_RADIANS_TO_DEGREES) * hs; + + // convert horizontal speed (fps) to degrees per second + speed_north_deg_sec = _speed_north_fps / ft_per_deg_lat; + speed_east_deg_sec = _speed_east_fps / ft_per_deg_lon; + +} + +SGVec3d FGAIBallistic::getCartOffsetPos(SGGeod inpos, double user_heading, + double user_pitch, double user_roll + ) const{ + + // convert geodetic positions to geocentered + SGVec3d cartuserPos = SGVec3d::fromGeod(inpos); + //SGVec3d cartuserPos = getCartUserPos(); + //SGVec3d cartPos = getCartPos(); + + // Transform to the right coordinate frame, configuration is done in + // the x-forward, y-right, z-up coordinates (feet), computation + // in the simulation usual body x-forward, y-right, z-down coordinates + // (meters) ) + SGVec3d _off(_x_offset * SG_FEET_TO_METER, + _y_offset * SG_FEET_TO_METER, + -_z_offset * SG_FEET_TO_METER); + + // Transform the user position to the horizontal local coordinate system. + SGQuatd hlTrans = SGQuatd::fromLonLat(inpos); + + // and postrotate the orientation of the user model wrt the horizontal + // local frame + hlTrans *= SGQuatd::fromYawPitchRollDeg( + user_heading, + user_pitch, + user_roll); + + // The offset converted to the usual body fixed coordinate system + // rotated to the earth-fixed coordinates axis + SGVec3d off = hlTrans.backTransform(_off); + + // Add the position offset of the user model to get the geocentered position + SGVec3d offsetPos = cartuserPos + off; + + return offsetPos; +} + +void FGAIBallistic::setOffsetVelocity(double dt, SGGeod offsetpos) { + //calculate the distance from the previous offset position + SGVec3d cartoffsetPos = SGVec3d::fromGeod(offsetpos); + SGVec3d diff = cartoffsetPos - _oldcartoffsetPos; + + double distance = norm(diff); + //calculate speed knots + speed = (distance/dt) * SG_MPS_TO_KT; + + //now calulate the angle between the old and current postion positions (degrees) + double angle = 0; + double daltM = offsetpos.getElevationM() - _oldoffsetpos.getElevationM(); + + if (fabs(distance) < SGLimits::min()) { + angle = 0; + } else { + double sAngle = daltM/distance; + sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); + angle = SGMiscd::rad2deg(asin(sAngle)); + } + + _elevation = angle; + + //calculate vertical and horizontal speed components + calcVSHS(); + + //calculate the bearing of the new offset position from the old + double az1, az2, dist; + geo_inverse_wgs_84(_oldoffsetpos, offsetpos, &az1, &az2, &dist); + _azimuth = az1; + + //resolve horizontal speed into north and east components: + calcNE(); + + // and finally store the new values + _oldcartoffsetPos = cartoffsetPos; + _oldoffsetpos = offsetpos; +} + +// end AIBallistic