X-Git-Url: https://git.mxchange.org/?a=blobdiff_plain;f=src%2FAIModel%2FAIBallistic.cxx;h=5e3b155095f1dc3147a81dbdbd2d80c7570387c3;hb=b78bf2e9e66f9e404f76d416db11315302da0f40;hp=63fceb8653d163473914eff3349e41c7b3ae0a61;hpb=c43e514e8776d9537317af6d64e17332bde9b0c3;p=flightgear.git diff --git a/src/AIModel/AIBallistic.cxx b/src/AIModel/AIBallistic.cxx index 63fceb865..5e3b15509 100644 --- a/src/AIModel/AIBallistic.cxx +++ b/src/AIModel/AIBallistic.cxx @@ -3,6 +3,8 @@ // Written by David Culp, started November 2003. // - davidculp2@comcast.net // +// With major additions by Mathias Froehlich & Vivian Meazza 2004-2008 +// // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the @@ -15,106 +17,1053 @@ // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software -// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. #ifdef HAVE_CONFIG_H # include #endif -#include -#include +#include +#include +#include + +#include #include "AIBallistic.hxx" +#include
+ +using namespace simgear; + +const double FGAIBallistic::slugs_to_kgs = 14.5939029372; +const double FGAIBallistic::slugs_to_lbs = 32.1740485564; -FGAIBallistic::FGAIBallistic(FGAIManager* mgr) { - manager = mgr; - _type_str = "ballistic"; - _otype = otBallistic; +FGAIBallistic::FGAIBallistic(object_type ot) : + FGAIBase(ot), + _height(0.0), + _ht_agl_ft(0.0), + _azimuth(0.0), + _elevation(0.0), + _rotation(0.0), + _formate_to_ac(false), + _aero_stabilised(false), + _drag_area(0.007), + _life_timer(0.0), + _gravity(32.1740485564), + _buoyancy(0), + _wind(true), + _mass(0), + _random(false), + _load_resistance(0), + _solid(false), + _force_stabilised(false), + _slave_to_ac(false), + _slave_load_to_ac(false), + _contents_lb(0), + _report_collision(false), + _report_impact(false), + _external_force(false), + _impact_report_node(fgGetNode("/ai/models/model-impact", true)), + _old_height(0) + +{ + no_roll = false; } FGAIBallistic::~FGAIBallistic() { } +void FGAIBallistic::readFromScenario(SGPropertyNode* scFileNode) { + if (!scFileNode){ + return; + } + + FGAIBase::readFromScenario(scFileNode); + + //setPath(scFileNode->getStringValue("model", "Models/Geometry/rocket.ac")); + setAzimuth(scFileNode->getDoubleValue("azimuth", 0.0)); + setElevation(scFileNode->getDoubleValue("elevation", 0)); + setDragArea(scFileNode->getDoubleValue("eda", 0.007)); + setLife(scFileNode->getDoubleValue("life", 900.0)); + setBuoyancy(scFileNode->getDoubleValue("buoyancy", 0)); + setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0)); + setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0)); + setWind(scFileNode->getBoolValue("wind", false)); + setRoll(scFileNode->getDoubleValue("roll", 0.0)); + setCd(scFileNode->getDoubleValue("cd", 0.029)); + //setMass(scFileNode->getDoubleValue("mass", 0.007)); + setWeight(scFileNode->getDoubleValue("weight", 0.25)); + setStabilisation(scFileNode->getBoolValue("aero-stabilized", false)); + setNoRoll(scFileNode->getBoolValue("no-roll", false)); + setRandom(scFileNode->getBoolValue("random", false)); + setImpact(scFileNode->getBoolValue("impact", false)); + setImpactReportNode(scFileNode->getStringValue("impact-reports")); + setName(scFileNode->getStringValue("name", "Rocket")); + setFuseRange(scFileNode->getDoubleValue("fuse-range", 0.0)); + setSMPath(scFileNode->getStringValue("submodel-path", "")); + setSubID(scFileNode->getIntValue("SubID", 0)); + setExternalForce(scFileNode->getBoolValue("external-force", false)); + setForcePath(scFileNode->getStringValue("force-path", "")); + setForceStabilisation(scFileNode->getBoolValue("force-stabilized", false)); + setXoffset(scFileNode->getDoubleValue("x-offset", 0.0)); + setYoffset(scFileNode->getDoubleValue("y-offset", 0.0)); + setZoffset(scFileNode->getDoubleValue("z-offset", 0.0)); + setPitchoffset(scFileNode->getDoubleValue("pitch-offset", 0.0)); + setRolloffset(scFileNode->getDoubleValue("roll-offset", 0.0)); + setYawoffset(scFileNode->getDoubleValue("yaw-offset", 0.0)); + setGroundOffset(scFileNode->getDoubleValue("ground-offset", 0.0)); + setLoadOffset(scFileNode->getDoubleValue("load-offset", 0.0)); + setSlaved(scFileNode->getBoolValue("slaved", false)); + setSlavedLoad(scFileNode->getBoolValue("slaved-load", false)); + setContentsNode(scFileNode->getStringValue("contents")); + setRandom(scFileNode->getBoolValue("random", false)); +} + +bool FGAIBallistic::init(bool search_in_AI_path) { + FGAIBase::init(search_in_AI_path); + + _impact_reported = false; + _collision_reported = false; + invisible = false; + + _elapsed_time += (sg_random() * 100); + + props->setStringValue("material/name", ""); + props->setStringValue("name", _name.c_str()); + props->setStringValue("submodels/path", _submodel.c_str()); -bool FGAIBallistic::init() { - FGAIBase::init(); - vs = sin( elevation * 0.017453293 ) * speed; - hs = cos( elevation * 0.017453293 ) * speed; - aero_stabilized = true; - hdg = azimuth; - pitch = elevation; - return true; + // start with high value so that animations don't trigger yet + _ht_agl_ft = 1e10; + hdg = _azimuth; + pitch = _elevation; + roll = _rotation; + + Transform(); + + return true; } void FGAIBallistic::bind() { - FGAIBase::bind(); + // FGAIBase::bind(); + + props->tie("sim/time/elapsed-sec", + SGRawValueMethods(*this, + &FGAIBallistic::_getTime)); + props->tie("mass-slug", + SGRawValueMethods(*this, + &FGAIBallistic::getMass)); + props->tie("material/load-resistance", + SGRawValuePointer(&_load_resistance)); + props->tie("material/solid", + SGRawValuePointer(&_solid)); + props->tie("altitude-agl-ft", + SGRawValuePointer(&_ht_agl_ft)); + props->tie("controls/slave-to-ac", + SGRawValueMethods + (*this, &FGAIBallistic::getSlaved, &FGAIBallistic::setSlaved)); + props->tie("controls/invisible", + SGRawValuePointer(&invisible)); + + if(_external_force){ + props->tie("controls/force_stabilized", + SGRawValuePointer(&_force_stabilised)); + props->tie("position/global-x", + SGRawValueMethods(*this, &FGAIBase::_getCartPosX, 0)); + props->tie("position/global-y", + SGRawValueMethods(*this, &FGAIBase::_getCartPosY, 0)); + props->tie("position/global-z", + SGRawValueMethods(*this, &FGAIBase::_getCartPosZ, 0)); + props->tie("velocities/vertical-speed-fps", + SGRawValuePointer(&vs)); + props->tie("velocities/true-airspeed-kt", + SGRawValuePointer(&speed)); + props->tie("velocities/horizontal-speed-fps", + SGRawValuePointer(&hs)); + props->tie("position/altitude-ft", + SGRawValueMethods(*this, &FGAIBase::_getAltitude, &FGAIBase::_setAltitude)); + props->tie("position/latitude-deg", + SGRawValueMethods(*this, &FGAIBase::_getLatitude, &FGAIBase::_setLatitude)); + props->tie("position/longitude-deg", + SGRawValueMethods(*this, &FGAIBase::_getLongitude, &FGAIBase::_setLongitude)); + props->tie("orientation/hdg-deg", + SGRawValuePointer(&hdg)); + props->tie("orientation/pitch-deg", + SGRawValuePointer(&pitch)); + props->tie("orientation/roll-deg", + SGRawValuePointer(&roll)); + props->tie("controls/slave-load-to-ac", + SGRawValueMethods + (*this, &FGAIBallistic::getSlavedLoad, &FGAIBallistic::setSlavedLoad)); + props->tie("position/load-offset", + SGRawValueMethods + (*this, &FGAIBallistic::getLoadOffset, &FGAIBallistic::setLoadOffset)); + props->tie("load/distance-to-hitch-ft", + SGRawValueMethods + (*this, &FGAIBallistic::getDistanceLoadToHitch)); + props->tie("load/elevation-to-hitch-deg", + SGRawValueMethods + (*this, &FGAIBallistic::getElevLoadToHitch)); + props->tie("load/bearing-to-hitch-deg", + SGRawValueMethods + (*this, &FGAIBallistic::getBearingLoadToHitch)); + } + } void FGAIBallistic::unbind() { - FGAIBase::unbind(); + // FGAIBase::unbind(); + + props->untie("sim/time/elapsed-sec"); + props->untie("mass-slug"); + props->untie("material/load-resistance"); + props->untie("material/solid"); + props->untie("altitude-agl-ft"); + props->untie("controls/slave-to-ac"); + props->untie("controls/invisible"); + + if(_external_force){ + props->untie("position/global-y"); + props->untie("position/global-x"); + props->untie("position/global-z"); + props->untie("velocities/vertical-speed-fps"); + props->untie("velocities/true-airspeed-kt"); + props->untie("velocities/horizontal-speed-fps"); + props->untie("position/altitude-ft"); + props->untie("position/latitude-deg"); + props->untie("position/longitude-deg"); + props->untie("position/ht-agl-ft"); + props->untie("orientation/hdg-deg"); + props->untie("orientation/pitch-deg"); + props->untie("orientation/roll-deg"); + props->untie("controls/force_stabilized"); + props->untie("position/load-offset"); + props->untie("load/distance-to-hitch-ft"); + props->untie("load/elevation-to-hitch-deg"); + props->untie("load/bearing-to-hitch-deg"); + } } void FGAIBallistic::update(double dt) { - FGAIBase::update(dt); - Run(dt); - Transform(); + FGAIBase::update(dt); + _setUserPos(); + + if (_slave_to_ac){ + slaveToAC(dt); + Transform(); + setHitchVelocity(dt); + } else if (_formate_to_ac){ + formateToAC(dt); + Transform(); + setHitchVelocity(dt); + } else if (!invisible){ + Run(dt); + Transform(); } +} void FGAIBallistic::setAzimuth(double az) { - azimuth = az; + hdg = _azimuth = az; } - void FGAIBallistic::setElevation(double el) { - elevation = el; + pitch = _elevation = el; +} + +void FGAIBallistic::setRoll(double rl) { + roll = _rotation = rl; +} + +void FGAIBallistic::setStabilisation(bool val) { + _aero_stabilised = val; +} + +void FGAIBallistic::setForceStabilisation(bool val) { + _force_stabilised = val; +} + +void FGAIBallistic::setNoRoll(bool nr) { + no_roll = nr; +} + +void FGAIBallistic::setDragArea(double a) { + _drag_area = a; +} + +void FGAIBallistic::setLife(double seconds) { + life = seconds; +} + +void FGAIBallistic::setBuoyancy(double fpss) { + _buoyancy = fpss; +} + +void FGAIBallistic::setWind_from_east(double fps) { + _wind_from_east = fps; +} + +void FGAIBallistic::setWind_from_north(double fps) { + _wind_from_north = fps; +} + +void FGAIBallistic::setWind(bool val) { + _wind = val; +} + +void FGAIBallistic::setCd(double c) { + _Cd = c; +} + +void FGAIBallistic::setMass(double m) { + _mass = m; +} + +void FGAIBallistic::setWeight(double w) { + _weight_lb = w; +} +void FGAIBallistic::setRandom(bool r) { + _random = r; +} + +void FGAIBallistic::setImpact(bool i) { + _report_impact = i; +} + +void FGAIBallistic::setCollision(bool c) { + _report_collision = c; +} + +void FGAIBallistic::setExternalForce(bool f) { + _external_force = f; +} + +void FGAIBallistic::setImpactReportNode(const string& path) { + + if (!path.empty()) + _impact_report_node = fgGetNode(path.c_str(), true); +} + +void FGAIBallistic::setName(const string& n) { + _name = n; +} + +void FGAIBallistic::setSMPath(const string& s) { + _submodel = s; +} + +void FGAIBallistic::setFuseRange(double f) { + _fuse_range = f; +} + +void FGAIBallistic::setSubID(int i) { + _subID = i; +} + +void FGAIBallistic::setSubmodel(const string& s) { + _submodel = s; +} + +void FGAIBallistic::setGroundOffset(double g) { + _ground_offset = g; +} + +void FGAIBallistic::setLoadOffset(double l) { + _load_offset = l; +} + +double FGAIBallistic::getLoadOffset() const { + return _load_offset; +} + +void FGAIBallistic::setSlaved(bool s) { + _slave_to_ac = s; } +void FGAIBallistic::setFormate(bool f) { + _formate_to_ac = f; +} -void FGAIBallistic::setStabilization(bool val) { - aero_stabilized = val; +void FGAIBallistic::setContentsNode(const string& path) { + if (!path.empty()) { + _contents_node = fgGetNode(path.c_str(), true); + } } +bool FGAIBallistic::getSlaved() const { + return _slave_to_ac; +} + +double FGAIBallistic::getMass() const { + return _mass; +} + +double FGAIBallistic::getContents() { + if(_contents_node) + _contents_lb = _contents_node->getChild("level-lbs",0,1)->getDoubleValue(); + return _contents_lb; +} + +void FGAIBallistic::setContents(double c) { + if(_contents_node) + _contents_lb = _contents_node->getChild("level-gal_us",0,1)->setDoubleValue(c); +} + +void FGAIBallistic::setSlavedLoad(bool l) { + _slave_load_to_ac = l; +} + +bool FGAIBallistic::getSlavedLoad() const { + return _slave_load_to_ac; +} + +void FGAIBallistic::setForcePath(const string& p) { + _force_path = p; + if (!_force_path.empty()) { + SGPropertyNode *fnode = fgGetNode(_force_path.c_str(), 0, true ); + _force_node = fnode->getChild("force-lb", 0, true); + _force_azimuth_node = fnode->getChild("force-azimuth-deg", 0, true); + _force_elevation_node = fnode->getChild("force-elevation-deg", 0, true); + } +} + +bool FGAIBallistic::getHtAGL(){ + + if (getGroundElevationM(SGGeod::fromGeodM(pos, 10000), + _elevation_m, &_material)) { + _ht_agl_ft = pos.getElevationFt() - _elevation_m * SG_METER_TO_FEET; + if (_material) { + const vector& names = _material->get_names(); + + _solid = _material->get_solid(); + _load_resistance = _material->get_load_resistance(); + _frictionFactor =_material->get_friction_factor(); + if (!names.empty()) + props->setStringValue("material/name", names[0].c_str()); + else + props->setStringValue("material/name", ""); + /*cout << "material " << mat_name + << " solid " << _solid + << " load " << _load_resistance + << " frictionFactor " << frictionFactor + << endl;*/ + } + return true; + } else { + return false; + } + +} + +double FGAIBallistic::getRecip(double az){ + // calculate the reciprocal of the input azimuth + if(az - 180 < 0){ + return az + 180; + } else { + return az - 180; + } +} + +void FGAIBallistic::setPch(double e, double dt, double coeff){ + double c = dt / (coeff + dt); + pitch = (e * c) + (pitch * (1 - c)); +} + +void FGAIBallistic::setBnk(double r, double dt, double coeff){ + double c = dt / (coeff + dt); + roll = (r * c) + (roll * (1 - c)); +} + +void FGAIBallistic::setHt(double h, double dt, double coeff){ + double c = dt / (coeff + dt); + _height = (h * c) + (_height * (1 - c)); +} + +void FGAIBallistic::setHdg(double az, double dt, double coeff){ + double recip = getRecip(hdg); + double c = dt / (coeff + dt); + //we need to ensure that we turn the short way to the new hdg + if (az < recip && az < hdg && hdg > 180) { + hdg = ((az + 360) * c) + (hdg * (1 - c)); + } else if (az > recip && az > hdg && hdg <= 180){ + hdg = ((az - 360) * c) + (hdg * (1 - c)); + } else { + hdg = (az * c) + (hdg * (1 - c)); + } + } + +double FGAIBallistic::getTgtXOffset() const { + return _tgt_x_offset; +} + +double FGAIBallistic::getTgtYOffset() const { + return _tgt_y_offset; +} + +double FGAIBallistic::getTgtZOffset() const { + return _tgt_z_offset; +} + +void FGAIBallistic::setTgtXOffset(double x){ + _tgt_x_offset = x; +} + +void FGAIBallistic::setTgtYOffset(double y){ + _tgt_y_offset = y; +} + +void FGAIBallistic::setTgtZOffset(double z){ + _tgt_z_offset = z; +} + +void FGAIBallistic::slaveToAC(double dt){ + + setHitchPos(); + pos.setLatitudeDeg(hitchpos.getLatitudeDeg()); + pos.setLongitudeDeg(hitchpos.getLongitudeDeg()); + pos.setElevationFt(hitchpos.getElevationFt()); + setHeading(manager->get_user_heading()); + setPitch(manager->get_user_pitch() + _pitch_offset); + setBank(manager->get_user_roll() + _roll_offset); + setSpeed(manager->get_user_speed()); + //update the mass (slugs) + _mass = (_weight_lb + getContents()) / slugs_to_lbs; + + /*cout <<"_mass "<<_mass <<" " << getContents() + <<" " << getContents() / slugs_to_lbs << endl;*/ +} void FGAIBallistic::Run(double dt) { + _life_timer += dt; + + // if life = -1 the object does not die + if (_life_timer > life && life != -1) + setDie(true); + + //set the contents in the appropriate tank or other property in the parent to zero + setContents(0); + + //randomise Cd by +- 5% + if (_random) + _Cd = _Cd * 0.95 + (0.05 * sg_random()); + + // Adjust Cd by Mach number. The equations are based on curves + // for a conventional shell/bullet (no boat-tail). + double Cdm; - double speed_north_deg_sec; - double speed_east_deg_sec; + if (Mach < 0.7) + Cdm = 0.0125 * Mach + _Cd; + else if (Mach < 1.2 ) + Cdm = 0.3742 * pow(Mach, 2) - 0.252 * Mach + 0.0021 + _Cd; + else + Cdm = 0.2965 * pow(Mach, -1.1506) + _Cd; - // the two drag calculations below assume sea-level density, - // mass of 0.03 slugs, drag coeff of 0.295, frontal area of 0.007 ft2 - // adjust horizontal speed due to drag - hs -= 0.000082 * hs * hs * dt; - if ( hs < 0.0 ) hs = 0.0; + //cout << "Mach " << Mach << " Cdm " << Cdm << "// ballistic speed kts "<< speed << endl; - // adjust vertical speed due to drag - if (vs > 0.0) { - vs -= 0.000082 * vs * vs * dt; - } else { - vs += 0.000082 * vs * vs * dt; - } - - // convert horizontal speed (fps) to degrees per second - speed_north_deg_sec = cos(hdg / SG_RADIANS_TO_DEGREES) * hs / ft_per_deg_lat; - speed_east_deg_sec = sin(hdg / SG_RADIANS_TO_DEGREES) * hs / ft_per_deg_lon; + // drag = Cd * 0.5 * rho * speed * speed * drag_area; + // rho is adjusted for altitude in void FGAIBase::update, + // using Standard Atmosphere (sealevel temperature 15C) + // acceleration = drag/mass; + // adjust speed by drag + speed -= (Cdm * 0.5 * rho * speed * speed * _drag_area/_mass) * dt; - // set new position - pos.setlat( pos.lat() + speed_north_deg_sec * dt); - pos.setlon( pos.lon() + speed_east_deg_sec * dt); + // don't let speed become negative + if ( speed < 0.0 ) + speed = 0.0; - // adjust vertical speed for acceleration of gravity - vs -= 32.17 * dt; + double speed_fps = speed * SG_KT_TO_FPS; + //double hs; - // adjust altitude (meters) - altitude += vs * dt * SG_FEET_TO_METER; - pos.setelev(altitude); + // calculate vertical and horizontal speed components + if (speed == 0.0) { + hs = vs = 0.0; + } else { + vs = sin( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps; + hs = cos( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps; + } - // adjust pitch if aerostabilized - if (aero_stabilized) pitch = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES; + //resolve horizontal speed into north and east components: + double speed_north_fps = cos(_azimuth / SG_RADIANS_TO_DEGREES) * hs; + double speed_east_fps = sin(_azimuth / SG_RADIANS_TO_DEGREES) * hs; - // set destruction flag if altitude less than sea level -1000 - if (altitude < -1000.0) setDie(true); + // convert horizontal speed (fps) to degrees per second + double speed_north_deg_sec = speed_north_fps / ft_per_deg_lat; + double speed_east_deg_sec = speed_east_fps / ft_per_deg_lon; + // if wind not required, set to zero + if (!_wind) { + _wind_from_north = 0; + _wind_from_east = 0; + } else { + _wind_from_north = manager->get_wind_from_north(); + _wind_from_east = manager->get_wind_from_east(); + } + + //calculate velocity due to external force + double force_speed_north_deg_sec = 0; + double force_speed_east_deg_sec = 0; +// double vs_force_fps = 0; + double hs_force_fps = 0; + double v_force_acc_fpss = 0; + double force_speed_north_fps = 0; + double force_speed_east_fps = 0; + double h_force_lbs = 0; + double normal_force_lbs = 0; + double normal_force_fpss = 0; + double static_friction_force_lbs = 0; + double dynamic_friction_force_lbs = 0; + double friction_force_speed_north_fps = 0; + double friction_force_speed_east_fps = 0; + double friction_force_speed_north_deg_sec = 0; + double friction_force_speed_east_deg_sec = 0; + double force_elevation_deg = 0; + + if (_external_force) { + SGPropertyNode *n = fgGetNode(_force_path.c_str(), true); + double force_lbs = n->getChild("force-lb", 0, true)->getDoubleValue(); + force_elevation_deg = n->getChild("force-elevation-deg", 0, true)->getDoubleValue(); + double force_azimuth_deg = n->getChild("force-azimuth-deg", 0, true)->getDoubleValue(); + + //resolve force into vertical and horizontal components: + double v_force_lbs = force_lbs * sin( force_elevation_deg * SG_DEGREES_TO_RADIANS ); + h_force_lbs = force_lbs * cos( force_elevation_deg * SG_DEGREES_TO_RADIANS ); + + //ground interaction + + if (getHtAGL()){ + double deadzone = 0.1; + + if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid){ + normal_force_lbs = (_mass * slugs_to_lbs) - v_force_lbs; + + if ( normal_force_lbs < 0 ) + normal_force_lbs = 0; + + pos.setElevationFt(0 + _ground_offset); + if (vs < 0) + vs = -vs * 0.5; + + // calculate friction + // we assume a static Coefficient of Friction (mu) of 0.62 (wood on concrete) + double mu = 0.62; + + static_friction_force_lbs = mu * normal_force_lbs * _frictionFactor; + + //adjust horizontal force. We assume that a speed of <= 5 fps is static + if (h_force_lbs <= static_friction_force_lbs && hs <= 5){ + h_force_lbs = hs = 0; + speed_north_fps = speed_east_fps = 0; + } else + dynamic_friction_force_lbs = (static_friction_force_lbs * 0.95); + + //ignore wind when on the ground for now + //TODO fix this + _wind_from_north = 0; + _wind_from_east = 0; + + } + + } + + //acceleration = (force(lbsf)/mass(slugs)) + v_force_acc_fpss = v_force_lbs/_mass; + normal_force_fpss = normal_force_lbs/_mass; + double h_force_acc_fpss = h_force_lbs/_mass; + double dynamic_friction_acc_fpss = dynamic_friction_force_lbs/_mass; + + // velocity = acceleration * dt + hs_force_fps = h_force_acc_fpss * dt; + double friction_force_fps = dynamic_friction_acc_fpss * dt; + + //resolve horizontal speeds into north and east components: + force_speed_north_fps = cos(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps; + force_speed_east_fps = sin(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps; + + friction_force_speed_north_fps = cos(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps; + friction_force_speed_east_fps = sin(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps; + + // convert horizontal speed (fps) to degrees per second + force_speed_north_deg_sec = force_speed_north_fps / ft_per_deg_lat; + force_speed_east_deg_sec = force_speed_east_fps / ft_per_deg_lon; + + friction_force_speed_north_deg_sec = friction_force_speed_north_fps / ft_per_deg_lat; + friction_force_speed_east_deg_sec = friction_force_speed_east_fps / ft_per_deg_lon; + } + + // convert wind speed (fps) to degrees lat/lon per second + double wind_speed_from_north_deg_sec = _wind_from_north / ft_per_deg_lat; + double wind_speed_from_east_deg_sec = _wind_from_east / ft_per_deg_lon; + + //recombine the horizontal velocity components + hs = sqrt(((speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps) + * (speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)) + + ((speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps) + * (speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps))); + + if (hs <= 0.00001) + hs = 0; + + // adjust vertical speed for acceleration of gravity, buoyancy, and vertical force + vs -= (_gravity - _buoyancy - v_force_acc_fpss - normal_force_fpss) * dt; + + if (vs <= 0.00001 && vs >= -0.00001) + vs = 0; + + // set new position + if(_slave_load_to_ac) { + setHitchPos(); + pos.setLatitudeDeg(hitchpos.getLatitudeDeg()); + pos.setLongitudeDeg(hitchpos.getLongitudeDeg()); + pos.setElevationFt(hitchpos.getElevationFt()); + + if (getHtAGL()){ + double deadzone = 0.1; + + if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid){ + pos.setElevationFt(0 + _ground_offset); + } else { + pos.setElevationFt(hitchpos.getElevationFt() + _load_offset); + } + + } + } else { + pos.setLatitudeDeg( pos.getLatitudeDeg() + + (speed_north_deg_sec - wind_speed_from_north_deg_sec + + force_speed_north_deg_sec + friction_force_speed_north_deg_sec) * dt ); + pos.setLongitudeDeg( pos.getLongitudeDeg() + + (speed_east_deg_sec - wind_speed_from_east_deg_sec + + force_speed_east_deg_sec + friction_force_speed_east_deg_sec) * dt ); + pos.setElevationFt(pos.getElevationFt() + vs * dt); + } + + // recalculate total speed + if ( vs == 0 && hs == 0) + speed = 0; + else + speed = sqrt( vs * vs + hs * hs) / SG_KT_TO_FPS; + + // recalculate elevation and azimuth (velocity vectors) + _elevation = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES; + _azimuth = atan2((speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps), + (speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)) + * SG_RADIANS_TO_DEGREES; + + // rationalise azimuth + if (_azimuth < 0) + _azimuth += 360; + + if (_aero_stabilised) { // we simulate rotational moment of inertia by using a filter + const double coeff = 0.9; + + // we assume a symetrical MI about the pitch and yaw axis + setPch(_elevation, dt, coeff); + setHdg(_azimuth, dt, coeff); + } else if (_force_stabilised) { // we simulate rotational moment of inertia by using a filter + const double coeff = 0.9; + double ratio = h_force_lbs/(_mass * slugs_to_lbs); + + if (ratio > 1) ratio = 1; + if (ratio < -1) ratio = -1; + + double force_pitch = acos(ratio) * SG_RADIANS_TO_DEGREES; + + if (force_pitch <= force_elevation_deg) + force_pitch = force_elevation_deg; + + // we assume a symetrical MI about the pitch and yaw axis + setPch(force_pitch,dt, coeff); + setHdg(_azimuth, dt, coeff); + } + + //do impacts and collisions + if (_report_impact && !_impact_reported) + handle_impact(); + + if (_report_collision && !_collision_reported) + handle_collision(); + + // set destruction flag if altitude less than sea level -1000 + if (altitude_ft < -1000.0 && life != -1) + setDie(true); + +} // end Run + +double FGAIBallistic::_getTime() const { + return _life_timer; +} + +void FGAIBallistic::handle_impact() { + + // try terrain intersection + if(!getHtAGL()) + return; + + if (_ht_agl_ft <= 0) { + SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: terrain impact"); + report_impact(_elevation_m); + _impact_reported = true; + + if (life == -1){ + invisible = true; + } else if (_subID == 0) // kill the AIObject if there is no subsubmodel + setDie(true); + } +} + +void FGAIBallistic::handle_collision() +{ + const FGAIBase *object = manager->calcCollision(pos.getElevationFt(), + pos.getLatitudeDeg(),pos.getLongitudeDeg(), _fuse_range); + + if (object) { + SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: object hit"); + report_impact(pos.getElevationM(), object); + _collision_reported = true; + } } +void FGAIBallistic::report_impact(double elevation, const FGAIBase *object) +{ + _impact_lat = pos.getLatitudeDeg(); + _impact_lon = pos.getLongitudeDeg(); + _impact_elev = elevation; + _impact_speed = speed * SG_KT_TO_MPS; + _impact_hdg = hdg; + _impact_pitch = pitch; + _impact_roll = roll; + + SGPropertyNode *n = props->getNode("impact", true); + if (object) + n->setStringValue("type", object->getTypeString()); + else + n->setStringValue("type", "terrain"); + + n->setDoubleValue("longitude-deg", _impact_lon); + n->setDoubleValue("latitude-deg", _impact_lat); + n->setDoubleValue("elevation-m", _impact_elev); + n->setDoubleValue("heading-deg", _impact_hdg); + n->setDoubleValue("pitch-deg", _impact_pitch); + n->setDoubleValue("roll-deg", _impact_roll); + n->setDoubleValue("speed-mps", _impact_speed); + + _impact_report_node->setStringValue(props->getPath()); +} + +SGVec3d FGAIBallistic::getCartUserPos() const { + SGVec3d cartUserPos = SGVec3d::fromGeod(userpos); + return cartUserPos; +} + +SGVec3d FGAIBallistic::getCartHitchPos() const{ + + // convert geodetic positions to geocentered + SGVec3d cartuserPos = getCartUserPos(); + SGVec3d cartPos = getCartPos(); + + // Transform to the right coordinate frame, configuration is done in + // the x-forward, y-right, z-up coordinates (feet), computation + // in the simulation usual body x-forward, y-right, z-down coordinates + // (meters) ) + SGVec3d _off(_x_offset * SG_FEET_TO_METER, + _y_offset * SG_FEET_TO_METER, + -_z_offset * SG_FEET_TO_METER); + + // Transform the user position to the horizontal local coordinate system. + SGQuatd hlTrans = SGQuatd::fromLonLat(userpos); + + // and postrotate the orientation of the user model wrt the horizontal + // local frame + hlTrans *= SGQuatd::fromYawPitchRollDeg( + manager->get_user_heading(), + manager->get_user_pitch(), + manager->get_user_roll()); + + // The offset converted to the usual body fixed coordinate system + // rotated to the earth-fixed coordinates axis + SGVec3d off = hlTrans.backTransform(_off); + + // Add the position offset of the user model to get the geocentered position + SGVec3d offsetPos = cartuserPos + off; + + return offsetPos; +} + +void FGAIBallistic::setHitchPos(){ + // convert the hitch geocentered position to geodetic + SGVec3d carthitchPos = getCartHitchPos(); + + SGGeodesy::SGCartToGeod(carthitchPos, hitchpos); +} + +double FGAIBallistic::getDistanceLoadToHitch() const { + //calculate the distance load to hitch + SGVec3d carthitchPos = getCartHitchPos(); + SGVec3d cartPos = getCartPos(); + + SGVec3d diff = carthitchPos - cartPos; + double distance = norm(diff); + return distance * SG_METER_TO_FEET; +} + +void FGAIBallistic::setHitchVelocity(double dt) { + //calculate the distance from the previous hitch position + SGVec3d carthitchPos = getCartHitchPos(); + SGVec3d diff = carthitchPos - _oldcarthitchPos; + + double distance = norm(diff); + + //calculate speed knots + speed = (distance/dt) * SG_MPS_TO_KT; + + //now calulate the angle between the old and current hitch positions (degrees) + double angle = 0; + double daltM = hitchpos.getElevationM() - oldhitchpos.getElevationM(); + + if (fabs(distance) < SGLimits::min()) { + angle = 0; + } else { + double sAngle = daltM/distance; + sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); + angle = SGMiscd::rad2deg(asin(sAngle)); + } + + _elevation = angle; + + //calculate the bearing of the new hitch position from the old + double az1, az2, dist; + + geo_inverse_wgs_84(oldhitchpos, hitchpos, &az1, &az2, &dist); + + _azimuth = az1; + + // and finally store the new values + _oldcarthitchPos = carthitchPos; + oldhitchpos = hitchpos; +} + +double FGAIBallistic::getElevLoadToHitch() const { + // now the angle, positive angles are upwards + double distance = getDistanceLoadToHitch() * SG_FEET_TO_METER; + double angle = 0; + double daltM = hitchpos.getElevationM() - pos.getElevationM(); + + if (fabs(distance) < SGLimits::min()) { + angle = 0; + } else { + double sAngle = daltM/distance; + sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); + angle = SGMiscd::rad2deg(asin(sAngle)); + } + + return angle; +} + +double FGAIBallistic::getBearingLoadToHitch() const { + //calculate the bearing and range of the second pos from the first + double az1, az2, distance; + + geo_inverse_wgs_84(pos, hitchpos, &az1, &az2, &distance); + + return az1; +} + +double FGAIBallistic::getRelBrgHitchToUser() const { + //calculate the relative bearing + double az1, az2, distance; + + geo_inverse_wgs_84(hitchpos, userpos, &az1, &az2, &distance); + + double rel_brg = az1 - hdg; + + if (rel_brg > 180) + rel_brg -= 360; + + return rel_brg; +} + +double FGAIBallistic::getElevHitchToUser() const { + + //calculate the distance from the user position + SGVec3d carthitchPos = getCartHitchPos(); + SGVec3d cartuserPos = getCartUserPos(); + + SGVec3d diff = cartuserPos - carthitchPos; + + double distance = norm(diff); + double angle = 0; + + double daltM = userpos.getElevationM() - hitchpos.getElevationM(); + + // now the angle, positive angles are upwards + if (fabs(distance) < SGLimits::min()) { + angle = 0; + } else { + double sAngle = daltM/distance; + sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); + angle = SGMiscd::rad2deg(asin(sAngle)); + } + + return angle; +} + +void FGAIBallistic::setTgtOffsets(double dt, double coeff){ + double c = dt / (coeff + dt); + + _x_offset = (_tgt_x_offset * c) + (_x_offset * (1 - c)); + _y_offset = (_tgt_y_offset * c) + (_y_offset * (1 - c)); + _z_offset = (_tgt_z_offset * c) + (_z_offset * (1 - c)); +} + +void FGAIBallistic::formateToAC(double dt){ + + setTgtOffsets(dt, 25); + setHitchPos(); + setHitchVelocity(dt); + + // elapsed time has a random initialisation so that each + // wingman moves differently + _elapsed_time += dt; + + // we derive a sine based factor to give us smoothly + // varying error between -1 and 1 + double factor = sin(SGMiscd::deg2rad(_elapsed_time * 10)); + double r_angle = 5 * factor; + double p_angle = 2.5 * factor; + double h_angle = 5 * factor; + double h_feet = 3 * factor; + + pos.setLatitudeDeg(hitchpos.getLatitudeDeg()); + pos.setLongitudeDeg(hitchpos.getLongitudeDeg()); + + if (getHtAGL()){ + + if(_ht_agl_ft <= 10) { + _height = userpos.getElevationFt(); + } else if (_ht_agl_ft > 10 && _ht_agl_ft <= 150 ) { + setHt(userpos.getElevationFt(), dt, 1.0); + } else if (_ht_agl_ft > 150 && _ht_agl_ft <= 250) { + setHt(hitchpos.getElevationFt()+ h_feet, dt, 0.75); + } else + setHt(hitchpos.getElevationFt()+ h_feet, dt, 0.5); + + pos.setElevationFt(_height); + } + + // these calculations are unreliable at slow speeds + if(speed >= 10) { + setHdg(_azimuth + h_angle, dt, 0.9); + setPch(_elevation + p_angle + _pitch_offset, dt, 0.9); + + if (roll <= 115 && roll >= -115) + setBnk(manager->get_user_roll() + r_angle + _roll_offset, dt, 0.5); + else + roll = manager->get_user_roll() + r_angle + _roll_offset; + + } else { + setHdg(manager->get_user_heading(), dt, 0.9); + setPch(manager->get_user_pitch() + _pitch_offset, dt, 0.9); + setBnk(manager->get_user_roll() + _roll_offset, dt, 0.9); + } + + setSpeed(speed); +} +// end AIBallistic