X-Git-Url: https://git.mxchange.org/?a=blobdiff_plain;f=src%2FAIModel%2FAIBallistic.cxx;h=8ad900bdb0f119dc6591b698d4773ed1c89a72f8;hb=99ea9c9583d75cbf065e8a9d8f683c0daa913c95;hp=86703da9c6065e471369d5ae235865aca3de0a07;hpb=2d7a6e475d2376619caa76185e326a0c2d059f96;p=flightgear.git diff --git a/src/AIModel/AIBallistic.cxx b/src/AIModel/AIBallistic.cxx index 86703da9c..be5bcd74f 100644 --- a/src/AIModel/AIBallistic.cxx +++ b/src/AIModel/AIBallistic.cxx @@ -3,6 +3,8 @@ // Written by David Culp, started November 2003. // - davidculp2@comcast.net // +// With major additions by Mathias Froehlich & Vivian Meazza 2004-2008 +// // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the @@ -15,111 +17,1231 @@ // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software -// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. #ifdef HAVE_CONFIG_H # include #endif -#include -#include +#include +#include +#include + +#include #include "AIBallistic.hxx" +#include
+#include + +using namespace simgear; +using std::string; + +const double FGAIBallistic::slugs_to_kgs = 14.5939029372; +const double FGAIBallistic::slugs_to_lbs = 32.1740485564; + +FGAIBallistic::FGAIBallistic(object_type ot) : +FGAIBase(ot, false), +_height(0.0), +_speed(0), +_ht_agl_ft(0.0), +_azimuth(0.0), +_elevation(0.0), +_rotation(0.0), +hs(0), +_elapsed_time(0), +_az_random_error(0.0), +_el_random_error(0.0), +_aero_stabilised(false), +_drag_area(0.007), +_cd(0.029), +_init_cd(0.029), +_cd_randomness(0.0), +_buoyancy(0), +_life_timer(0.0), +_wind(true), +_mass(0), +_random(false), +_life_randomness(0.0), +_load_resistance(0), +_solid(false), +_force_stabilised(false), +_slave_to_ac(false), +_slave_load_to_ac(false), +_contents_lb(0), +_report_collision(false), +_report_impact(false), +_external_force(false), +_report_expiry(false), +_impact_report_node(fgGetNode("/ai/models/model-impact", true)) -FGAIBallistic::FGAIBallistic() { - _type_str = "ballistic"; +{ + no_roll = false; } FGAIBallistic::~FGAIBallistic() { } +void FGAIBallistic::readFromScenario(SGPropertyNode* scFileNode) { + if (!scFileNode){ + return; + } -bool FGAIBallistic::init() { - FGAIBase::init(); - vs = sin( elevation * 0.017453293 ) * speed; - hs = cos( elevation * 0.017453293 ) * speed; - aero_stabilized = true; - hdg = azimuth; - pitch = elevation; - return true; + FGAIBase::readFromScenario(scFileNode); + + //setPath(scFileNode->getStringValue("model", "Models/Geometry/rocket.ac")); + setRandom(scFileNode->getBoolValue("random", false)); + setAzimuth(scFileNode->getDoubleValue("azimuth", 0.0)); + setElevation(scFileNode->getDoubleValue("elevation", 0)); + setDragArea(scFileNode->getDoubleValue("eda", 0.007)); + setLife(scFileNode->getDoubleValue("life", 900.0)); + setBuoyancy(scFileNode->getDoubleValue("buoyancy", 0)); + //setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0)); + //setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0)); + setWind(scFileNode->getBoolValue("wind", false)); + setRoll(scFileNode->getDoubleValue("roll", 0.0)); + setCd(scFileNode->getDoubleValue("cd", 0.029)); + //setMass(scFileNode->getDoubleValue("mass", 0.007)); + setWeight(scFileNode->getDoubleValue("weight", 0.25)); + setStabilisation(scFileNode->getBoolValue("aero-stabilised", false)); + setNoRoll(scFileNode->getBoolValue("no-roll", false)); + setImpact(scFileNode->getBoolValue("impact", false)); + setExpiry(scFileNode->getBoolValue("expiry", false)); + setCollision(scFileNode->getBoolValue("collision", false)); + setImpactReportNode(scFileNode->getStringValue("impact-reports")); + setName(scFileNode->getStringValue("name", "Rocket")); + setFuseRange(scFileNode->getDoubleValue("fuse-range", 0.0)); + setSMPath(scFileNode->getStringValue("submodel-path", "")); + setSubID(scFileNode->getIntValue("SubID", 0)); + setExternalForce(scFileNode->getBoolValue("external-force", false)); + setForcePath(scFileNode->getStringValue("force-path", "")); + setForceStabilisation(scFileNode->getBoolValue("force-stabilised", false)); + setXoffset(scFileNode->getDoubleValue("x-offset", 0.0)); + setYoffset(scFileNode->getDoubleValue("y-offset", 0.0)); + setZoffset(scFileNode->getDoubleValue("z-offset", 0.0)); + setPitchoffset(scFileNode->getDoubleValue("pitch-offset", 0.0)); + setRolloffset(scFileNode->getDoubleValue("roll-offset", 0.0)); + setYawoffset(scFileNode->getDoubleValue("yaw-offset", 0.0)); + setGroundOffset(scFileNode->getDoubleValue("ground-offset", 0.0)); + setLoadOffset(scFileNode->getDoubleValue("load-offset", 0.0)); + setSlaved(scFileNode->getBoolValue("slaved", false)); + setSlavedLoad(scFileNode->getBoolValue("slaved-load", false)); + setContentsPath(scFileNode->getStringValue("contents")); + setParentName(scFileNode->getStringValue("parent")); } -void FGAIBallistic::bind() { - FGAIBase::bind(); +bool FGAIBallistic::init(bool search_in_AI_path) { + FGAIBase::init(search_in_AI_path); + reinit(); + return true; } -void FGAIBallistic::unbind() { - FGAIBase::unbind(); +void FGAIBallistic::reinit() { + _impact_reported = false; + _collision_reported = false; + _expiry_reported = false; + + _impact_lat = 0; + _impact_lon = 0; + _impact_elev = 0; + _impact_hdg = 0; + _impact_pitch = 0; + _impact_roll = 0; + _impact_speed = 0; + + invisible = false; + + _elapsed_time += (sg_random() * 100); + + _life_timer = 0; + + props->setStringValue("material/name", ""); + props->setStringValue("name", _name.c_str()); + props->setStringValue("submodels/path", _path.c_str()); + + if (_slave_to_ac) { + props->setStringValue("force/path", _force_path.c_str()); + props->setStringValue("contents/path", _contents_path.c_str()); + } + + //cout << "init: name " << _name.c_str() << " _life_timer " << _life_timer + // << endl; + + //if(_parent != ""){ + // setParentNode(); + //} + + //setParentNodes(_selected_ac); + + //props->setStringValue("vector/path", _vector_path.c_str()); + + // start with high value so that animations don't trigger yet + _ht_agl_ft = 1e10; + hdg = _azimuth; + pitch = _elevation; + roll = _rotation; + + Transform(); + + if (_parent != "") { + setParentNode(); + } + + setParentNodes(_selected_ac); + + FGAIBase::reinit(); } -void FGAIBallistic::update(double dt) { +void FGAIBallistic::bind() { + // FGAIBase::bind(); - Run(dt); - Transform(); - FGAIBase::update(dt); + _tiedProperties.setRoot(props); + tie("sim/time/elapsed-sec", + SGRawValueMethods(*this, + &FGAIBallistic::_getTime, &FGAIBallistic::setTime)); + //tie("mass-slug", + // SGRawValueMethods(*this, + // &FGAIBallistic::getMass)); + + tie("material/solid", + SGRawValuePointer(&_solid)); + tie("altitude-agl-ft", + SGRawValuePointer(&_ht_agl_ft)); + tie("controls/slave-to-ac", + SGRawValueMethods + (*this, &FGAIBallistic::getSlaved, &FGAIBallistic::setSlaved)); + tie("controls/invisible", + SGRawValuePointer(&invisible)); + + if (_external_force || _slave_to_ac) { + tie("controls/force_stabilized", + SGRawValuePointer(&_force_stabilised)); + tie("position/global-x", + SGRawValueMethods(*this, &FGAIBase::_getCartPosX, 0)); + tie("position/global-y", + SGRawValueMethods(*this, &FGAIBase::_getCartPosY, 0)); + tie("position/global-z", + SGRawValueMethods(*this, &FGAIBase::_getCartPosZ, 0)); + tie("velocities/vertical-speed-fps", + SGRawValuePointer(&vs)); + tie("velocities/true-airspeed-kt", + SGRawValuePointer(&speed)); + tie("velocities/horizontal-speed-fps", + SGRawValuePointer(&hs)); + tie("position/altitude-ft", + SGRawValueMethods(*this, &FGAIBase::_getElevationFt, &FGAIBase::_setAltitude)); + tie("position/latitude-deg", + SGRawValueMethods(*this, &FGAIBase::_getLatitude, &FGAIBase::_setLatitude)); + tie("position/longitude-deg", + SGRawValueMethods(*this, &FGAIBase::_getLongitude, &FGAIBase::_setLongitude)); + tie("orientation/hdg-deg", + SGRawValuePointer(&hdg)); + tie("orientation/pitch-deg", + SGRawValuePointer(&pitch)); + tie("orientation/roll-deg", + SGRawValuePointer(&roll)); + tie("controls/slave-load-to-ac", + SGRawValueMethods + (*this, &FGAIBallistic::getSlavedLoad, &FGAIBallistic::setSlavedLoad)); + tie("position/load-offset", + SGRawValueMethods + (*this, &FGAIBallistic::getLoadOffset, &FGAIBallistic::setLoadOffset)); + tie("load/distance-to-hitch-ft", + SGRawValueMethods + (*this, &FGAIBallistic::getDistanceToHitch)); + tie("load/elevation-to-hitch-deg", + SGRawValueMethods + (*this, &FGAIBallistic::getElevToHitch)); + tie("load/bearing-to-hitch-deg", + SGRawValueMethods + (*this, &FGAIBallistic::getBearingToHitch)); + tie("material/load-resistance", + SGRawValuePointer(&_load_resistance)); + } } +void FGAIBallistic::update(double dt) +{ + FGAIBase::update(dt); + + if (_slave_to_ac) { + slaveToAC(dt); + Transform(); + } + else if (!invisible) { + Run(dt); + Transform(); + } + +} void FGAIBallistic::setAzimuth(double az) { - azimuth = az; + if (_random) + hdg = _azimuth = az - _az_random_error + 2 * _az_random_error * sg_random(); + else + hdg = _azimuth = az; +} + +void FGAIBallistic::setAzimuthRandomError(double error) { + _az_random_error = error; } +void FGAIBallistic::setElevationRandomError(double error) { + _el_random_error = error; +} void FGAIBallistic::setElevation(double el) { - elevation = el; + if (_random) + pitch = _elevation = el - _el_random_error + 2 * _el_random_error * sg_random(); + else + pitch = _elevation = el; +} + +void FGAIBallistic::setRoll(double rl) { + roll = _rotation = rl; +} + +void FGAIBallistic::setStabilisation(bool val) { + _aero_stabilised = val; +} + +void FGAIBallistic::setForceStabilisation(bool val) { + _force_stabilised = val; +} + +void FGAIBallistic::setNoRoll(bool nr) { + no_roll = nr; +} + +void FGAIBallistic::setDragArea(double a) { + _drag_area = a; +} + +void FGAIBallistic::setLife(double seconds) { + if (_random) + life = seconds * _life_randomness + (seconds * (1 -_life_randomness) * sg_random()); + else + life = seconds; +} + +void FGAIBallistic::setBuoyancy(double fpss) { + _buoyancy = fpss; +} + +void FGAIBallistic::setWind_from_east(double fps) { + _wind_from_east = fps; +} + +void FGAIBallistic::setWind_from_north(double fps) { + _wind_from_north = fps; +} + +void FGAIBallistic::setWind(bool val) { + _wind = val; +} + +void FGAIBallistic::setCd(double cd) { + _cd = cd; + _init_cd = cd; +} + +void FGAIBallistic::setCdRandomness(double randomness) { + _cd_randomness = randomness; +} + +void FGAIBallistic::setMass(double m) { + _mass = m; +} + +void FGAIBallistic::setWeight(double w) { + _weight_lb = w; +} + +void FGAIBallistic::setLifeRandomness(double randomness) { + _life_randomness = randomness; +} + +void FGAIBallistic::setRandom(bool r) { + _random = r; +} + +void FGAIBallistic::setImpact(bool i) { + _report_impact = i; +} + +void FGAIBallistic::setCollision(bool c) { + _report_collision = c; +} + +void FGAIBallistic::setExpiry(bool e) { + _report_expiry = e; } +void FGAIBallistic::setExternalForce(bool f) { + _external_force = f; +} + +void FGAIBallistic::setImpactReportNode(const string& path) { + if (!path.empty()) + _impact_report_node = fgGetNode(path.c_str(), true); +} + +void FGAIBallistic::setSMPath(const string& s) { + _path = s; + //cout << "submodel path " << _path << endl; +} + +void FGAIBallistic::setFuseRange(double f) { + _fuse_range = f; +} + +void FGAIBallistic::setSubID(int i) { + _subID = i; +} -void FGAIBallistic::setStabilization(bool val) { - aero_stabilized = val; +void FGAIBallistic::setSubmodel(const string& s) { + _submodel = s; } +void FGAIBallistic::setGroundOffset(double g) { + _ground_offset = g; +} + +void FGAIBallistic::setLoadOffset(double l) { + _load_offset = l; +} + +double FGAIBallistic::getLoadOffset() const { + return _load_offset; +} + +void FGAIBallistic::setSlaved(bool s) { + _slave_to_ac = s; +} + +void FGAIBallistic::setContentsPath(const string& path) { + _contents_path = path; + + if (!path.empty()) { + _contents_node = fgGetNode(path.c_str(), true); + } +} + +void FGAIBallistic::setContentsNode(SGPropertyNode_ptr node) { + if (node != 0) { + _contents_node = node; + _contents_path = _contents_node->getDisplayName(); + } +} + +void FGAIBallistic::setParentNodes(SGPropertyNode_ptr node) { + if (node != 0) { + _pnode = node; + _p_pos_node = _pnode->getChild("position", 0, true); + _p_lat_node = _p_pos_node->getChild("latitude-deg", 0, true); + _p_lon_node = _p_pos_node->getChild("longitude-deg", 0, true); + _p_alt_node = _p_pos_node->getChild("altitude-ft", 0, true); + _p_agl_node = _p_pos_node->getChild("altitude-agl-ft", 0, true); + + + _p_ori_node = _pnode->getChild("orientation", 0, true); + _p_pch_node = _p_ori_node->getChild("pitch-deg", 0, true); + _p_rll_node = _p_ori_node->getChild("roll-deg", 0, true); + _p_hdg_node = _p_ori_node->getChild("true-heading-deg",0, true); + + _p_vel_node = _pnode->getChild("velocities", 0, true); + _p_spd_node = _p_vel_node->getChild("true-airspeed-kt", 0, true); + } +} + +void FGAIBallistic::setParentPos() { + if (_pnode != 0) { + double lat = _p_lat_node->getDoubleValue(); + double lon = _p_lon_node->getDoubleValue(); + double alt = _p_alt_node->getDoubleValue(); + + _parentpos.setLongitudeDeg(lon); + _parentpos.setLatitudeDeg(lat); + _parentpos.setElevationFt(alt); + } +} + +bool FGAIBallistic::getSlaved() const { + return _slave_to_ac; +} + +double FGAIBallistic::getMass() const { + return _mass; +} + +double FGAIBallistic::getContents() { + if (_contents_node) { + _contents_lb = _contents_node->getChild("level-lbs", 0, 1)->getDoubleValue(); + } + return _contents_lb; +} + +void FGAIBallistic::setContents(double c) { + if (_contents_node) + _contents_lb = _contents_node->getChild("level-gal_us", 0, 1)->setDoubleValue(c); +} + +void FGAIBallistic::setSlavedLoad(bool l) { + _slave_load_to_ac = l; +} + +bool FGAIBallistic::getSlavedLoad() const { + return _slave_load_to_ac; +} + +void FGAIBallistic::setForcePath(const string& p) { + _force_path = p; + if (!_force_path.empty()) { + SGPropertyNode *fnode = fgGetNode(_force_path.c_str(), 0, true ); + _force_node = fnode->getChild("force-lb", 0, true); + _force_azimuth_node = fnode->getChild("force-azimuth-deg", 0, true); + _force_elevation_node = fnode->getChild("force-elevation-deg", 0, true); + } +} + +bool FGAIBallistic::getHtAGL(double start) { + const simgear::BVHMaterial* mat = 0; + if (getGroundElevationM(SGGeod::fromGeodM(pos, start), + _elevation_m, &mat)) { + const SGMaterial* material = dynamic_cast(mat); + _ht_agl_ft = pos.getElevationFt() - _elevation_m * SG_METER_TO_FEET; + + if (material) { + const std::vector& names = material->get_names(); + _solid = material->get_solid(); + _load_resistance = material->get_load_resistance(); + _frictionFactor = material->get_friction_factor(); + + if (!names.empty()) + props->setStringValue("material/name", names[0].c_str()); + else + props->setStringValue("material/name", ""); + + _mat_name = names[0]; + + //cout << "material " << _mat_name + //<< " solid " << _solid + //<< " load " << _load_resistance + //<< " frictionFactor " << _frictionFactor + //<< endl; + } + + return true; + } + else { + return false; + } +} + +double FGAIBallistic::getRecip(double az) { + // calculate the reciprocal of the input azimuth + if (az - 180 < 0) { + return az + 180; + } + else { + return az - 180; + } +} + +void FGAIBallistic::setPch(double e, double dt, double coeff) { + double c = dt / (coeff + dt); + pitch = (e * c) + (pitch * (1 - c)); +} + +void FGAIBallistic::setBnk(double r, double dt, double coeff) { + double c = dt / (coeff + dt); + roll = (r * c) + (roll * (1 - c)); +} + +void FGAIBallistic::setSpd(double s, double dt, double coeff) { + double c = dt / (coeff + dt); + _speed = (s * c) + (_speed * (1 - c)); +} + +void FGAIBallistic::setHt(double h, double dt, double coeff) { + double c = dt / (coeff + dt); + _height = (h * c) + (_height * (1 - c)); +} + +int FGAIBallistic::setHdg(double tgt_hdg, double dt, double coeff) { + double recip = getRecip(hdg); + double c = dt / (coeff + dt); + //cout << "set heading " << tgt_hdg << endl; + //we need to ensure that we turn the short way to the new hdg + if (tgt_hdg < recip && tgt_hdg < hdg && hdg > 180) { + hdg = ((tgt_hdg + 360) * c) + (hdg * (1 - c)); +// cout << "case 1: right turn" << endl; + } else if (tgt_hdg > recip && tgt_hdg > hdg && hdg <= 180){ + hdg = ((tgt_hdg - 360) * c) + (hdg * (1 - c)); +// cout << "case 2: left turn" << endl; + } else { + hdg = (tgt_hdg * c) + (hdg * (1 - c)); +// cout << "case 4: left turn" << endl; + } + return -1; +} + +double FGAIBallistic::getTgtXOffset() const { + return _tgt_x_offset; +} + +double FGAIBallistic::getTgtYOffset() const { + return _tgt_y_offset; +} + +double FGAIBallistic::getTgtZOffset() const { + return _tgt_z_offset; +} + +void FGAIBallistic::setTgtXOffset(double x) { + _tgt_x_offset = x; +} + +void FGAIBallistic::setTgtYOffset(double y) { + _tgt_y_offset = y; +} + +void FGAIBallistic::setTgtZOffset(double z) { + _tgt_z_offset = z; +} + +void FGAIBallistic::slaveToAC(double dt) { + if (invisible) + return; + + double hdg, pch, rll;//, agl = 0; + + if (_pnode != 0) { + setParentPos(); + hdg = _p_hdg_node->getDoubleValue(); + pch = _p_pch_node->getDoubleValue(); + rll = _p_rll_node->getDoubleValue(); +// agl = _p_agl_node->getDoubleValue(); + setOffsetPos(_parentpos, hdg, pch, rll); + setSpeed(_p_spd_node->getDoubleValue()); + } + else { + hdg = manager->get_user_heading(); + pch = manager->get_user_pitch(); + rll = manager->get_user_roll(); +// agl = manager->get_user_agl(); + setOffsetPos(globals->get_aircraft_position(), hdg, pch, rll); + setSpeed(manager->get_user_speed()); + } + + pos.setLatitudeDeg(_offsetpos.getLatitudeDeg()); + pos.setLongitudeDeg(_offsetpos.getLongitudeDeg()); + pos.setElevationFt(_offsetpos.getElevationFt()); + setHeading(hdg); + setPitch(pch + _pitch_offset); + setBank(rll + _roll_offset); + setOffsetVelocity(dt, pos); + setTime(0); + + //update the mass (slugs) + _mass = (_weight_lb + getContents()) / slugs_to_lbs; + + _impact_reported = false; + + //cout << _name << " _mass "<<_mass <<" " << getContents() + //<< " " << getContents() / slugs_to_lbs << " weight " << _weight_lb << endl; + // cout << _name << " update hs " << hs << " vs " << vs << endl; +} void FGAIBallistic::Run(double dt) { + _life_timer += dt; + + //_pass += 1; + //cout<<"AIBallistic run: name " << _name.c_str() + // << " dt " << dt << " _life_timer " << _life_timer << " pass " << _pass << endl; + + // if life = -1 the object does not die + if (_life_timer > life && life != -1) { + if (_report_expiry && !_expiry_reported && !_impact_reported && !_collision_reported) { + //cout<<"AIBallistic run: name " << _name.c_str() << " expiry " + //<< " _life_timer " << _life_timer<< endl; + handle_expiry(); + } + else { + //cout<<"AIBallistic run: name " << _name.c_str() + // << " die " << " _life_timer " << _life_timer << endl; + setDie(true); + } + + setTime(0); + } + + // Set the contents in the appropriate tank or other property in the parent to zero + setContents(0); + + if (_random) { + // Keep the new Cd within +- 10% of the current Cd to avoid a fluctuating value + double cd_min = _cd * 0.9; + double cd_max = _cd * 1.1; + + // Randomize Cd by +- a certain percentage of the initial Cd + _cd = _init_cd * (1 - _cd_randomness + 2 * _cd_randomness * sg_random()); + + if (_cd < cd_min) _cd = cd_min; + if (_cd > cd_max) _cd = cd_max; + } + + // Adjust Cd by Mach number. The equations are based on curves + // for a conventional shell/bullet (no boat-tail). + double Cdm; + + if (Mach < 0.7) + Cdm = 0.0125 * Mach + _cd; + else if (Mach < 1.2) + Cdm = 0.3742 * pow(Mach, 2) - 0.252 * Mach + 0.0021 + _cd; + else + Cdm = 0.2965 * pow(Mach, -1.1506) + _cd; + + //cout <<_name << " Mach " << Mach << " Cdm " << Cdm + // << " ballistic speed kts "<< speed << endl; + + // drag = Cd * 0.5 * rho * speed * speed * drag_area; + // rho is adjusted for altitude in void FGAIBase::update, + // using Standard Atmosphere (sealevel temperature 15C) + // acceleration = drag/mass; + // adjust speed by drag + speed -= (Cdm * 0.5 * rho * speed * speed * _drag_area/_mass) * dt; + + // don't let speed become negative + if (speed < 0.0) + speed = 0.0; + +// double speed_fps = speed * SG_KT_TO_FPS; + + // calculate vertical and horizontal speed components + calcVSHS(); + + //resolve horizontal speed into north and east components: + //and convert horizontal speed (fps) to degrees per second + calcNE(); + + // If wind not required, set to zero + if (!_wind) { + _wind_from_north = 0; + _wind_from_east = 0; + } + else { + _wind_from_north = manager->get_wind_from_north(); + _wind_from_east = manager->get_wind_from_east(); + } + + // Calculate velocity due to external force + double force_speed_north_deg_sec = 0; + double force_speed_east_deg_sec = 0; + double hs_force_fps = 0; + double v_force_acc_fpss = 0; + double force_speed_north_fps = 0; + double force_speed_east_fps = 0; + double h_force_lbs = 0; + double normal_force_lbs = 0; + double normal_force_fpss = 0; + double static_friction_force_lbs = 0; + double dynamic_friction_force_lbs = 0; + double friction_force_speed_north_fps = 0; + double friction_force_speed_east_fps = 0; + double friction_force_speed_north_deg_sec = 0; + double friction_force_speed_east_deg_sec = 0; + double force_elevation_deg = 0; + double force_azimuth_deg = 0; + double force_lbs = 0; + + if (_external_force) { + //cout << _name << " external force " << hdg << " az " << _azimuth << endl; + + SGPropertyNode *n = fgGetNode(_force_path.c_str(), true); + force_lbs = n->getChild("force-lb", 0, true)->getDoubleValue(); + force_elevation_deg = n->getChild("force-elevation-deg", 0, true)->getDoubleValue(); + force_azimuth_deg = n->getChild("force-azimuth-deg", 0, true)->getDoubleValue(); + + // Resolve force into vertical and horizontal components: + double v_force_lbs = force_lbs * sin( force_elevation_deg * SG_DEGREES_TO_RADIANS ); + h_force_lbs = force_lbs * cos( force_elevation_deg * SG_DEGREES_TO_RADIANS ); + + // Perform ground interaction if impacts are not calculated + if (!_report_impact && getHtAGL(10000)) { + double deadzone = 0.1; + + if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid) { + normal_force_lbs = (_mass * slugs_to_lbs) - v_force_lbs; + + if (normal_force_lbs < 0) + normal_force_lbs = 0; + + pos.setElevationFt(0 + _ground_offset); + if (vs < 0) + vs = -vs * 0.5; + + // Calculate friction. We assume a static coefficient of + // friction (mu) of 0.62 (wood on concrete) + double mu = 0.62; - double speed_north_deg_sec; - double speed_east_deg_sec; - double ft_per_deg_lon; - double ft_per_deg_lat; + static_friction_force_lbs = mu * normal_force_lbs * _frictionFactor; - // get size of a degree at this latitude - ft_per_deg_lat = 366468.96 - 3717.12 * cos(pos.lat()/SG_RADIANS_TO_DEGREES); - ft_per_deg_lon = 365228.16 * cos(pos.lat() / SG_RADIANS_TO_DEGREES); + // Adjust horizontal force. We assume that a speed of <= 5 fps is static + if (h_force_lbs <= static_friction_force_lbs && hs <= 5) { + h_force_lbs = hs = 0; + _speed_north_fps = _speed_east_fps = 0; + } + else + dynamic_friction_force_lbs = (static_friction_force_lbs * 0.95); - // the two drag calculations below assume sea-level density, - // mass of 0.03 slugs, drag coeff of 0.295, frontal area of 0.007 ft2 - // adjust horizontal speed due to drag - hs -= 0.000082 * hs * hs * dt; - if ( hs < 0.0 ) hs = 0.0; + // Ignore wind when on the ground for now + //TODO fix this + _wind_from_north = 0; + _wind_from_east = 0; + } + } - // adjust vertical speed due to drag - if (vs > 0.0) { - vs -= 0.000082 * vs * vs * dt; - } else { - vs += 0.000082 * vs * vs * dt; - } - - // convert horizontal speed (fps) to degrees per second - speed_north_deg_sec = cos(hdg / SG_RADIANS_TO_DEGREES) * hs / ft_per_deg_lat; - speed_east_deg_sec = sin(hdg / SG_RADIANS_TO_DEGREES) * hs / ft_per_deg_lon; + //acceleration = (force(lbsf)/mass(slugs)) + v_force_acc_fpss = v_force_lbs / _mass; + normal_force_fpss = normal_force_lbs / _mass; + double h_force_acc_fpss = h_force_lbs / _mass; + double dynamic_friction_acc_fpss = dynamic_friction_force_lbs / _mass; - // set new position - pos.setlat( pos.lat() + speed_north_deg_sec * dt); - pos.setlon( pos.lon() + speed_east_deg_sec * dt); + // velocity = acceleration * dt + hs_force_fps = h_force_acc_fpss * dt; + double friction_force_fps = dynamic_friction_acc_fpss * dt; - // adjust vertical speed for acceleration of gravity - vs -= 32.17 * dt; + //resolve horizontal speeds into north and east components: + force_speed_north_fps = cos(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps; + force_speed_east_fps = sin(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps; - // adjust altitude (meters) - altitude += vs * dt * SG_FEET_TO_METER; - pos.setelev(altitude); + friction_force_speed_north_fps = cos(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps; + friction_force_speed_east_fps = sin(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps; - // adjust pitch if aerostabilized - if (aero_stabilized) pitch = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES; + // convert horizontal speed (fps) to degrees per second + force_speed_north_deg_sec = force_speed_north_fps / ft_per_deg_lat; + force_speed_east_deg_sec = force_speed_east_fps / ft_per_deg_lon; - // set destruction flag if altitude less than sea level -1000 - if (altitude < -1000.0) setDie(true); + friction_force_speed_north_deg_sec = friction_force_speed_north_fps / ft_per_deg_lat; + friction_force_speed_east_deg_sec = friction_force_speed_east_fps / ft_per_deg_lon; + } + // convert wind speed (fps) to degrees lat/lon per second + double wind_speed_from_north_deg_sec = _wind_from_north / ft_per_deg_lat; + double wind_speed_from_east_deg_sec = _wind_from_east / ft_per_deg_lon; + + //recombine the horizontal velocity components + hs = sqrt(((_speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps) + * (_speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)) + + ((_speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps) + * (_speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps))); + + if (hs <= 0.00001) + hs = 0; + + // adjust vertical speed for acceleration of gravity, buoyancy, and vertical force + double gravity = SG_METER_TO_FEET * (Environment::Gravity::instance()->getGravity(pos)); + vs -= (gravity - _buoyancy - v_force_acc_fpss - normal_force_fpss) * dt; + + if (vs <= 0.00001 && vs >= -0.00001) + vs = 0; + + // set new position + if (_slave_load_to_ac) { + setOffsetPos(pos, + manager->get_user_heading(), + manager->get_user_pitch(), + manager->get_user_roll() + ); + pos.setLatitudeDeg(_offsetpos.getLatitudeDeg()); + pos.setLongitudeDeg(_offsetpos.getLongitudeDeg()); + pos.setElevationFt(_offsetpos.getElevationFt()); + + if (getHtAGL(10000)) { + double deadzone = 0.1; + + if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid) { + pos.setElevationFt(0 + _ground_offset); + } + else { + pos.setElevationFt(_offsetpos.getElevationFt() + _load_offset); + } + } + } + else { + pos.setLatitudeDeg( pos.getLatitudeDeg() + + (speed_north_deg_sec - wind_speed_from_north_deg_sec + + force_speed_north_deg_sec + friction_force_speed_north_deg_sec) * dt ); + pos.setLongitudeDeg( pos.getLongitudeDeg() + + (speed_east_deg_sec - wind_speed_from_east_deg_sec + + force_speed_east_deg_sec + friction_force_speed_east_deg_sec) * dt ); + pos.setElevationFt(pos.getElevationFt() + vs * dt); + } + +// cout << _name << " run hs " << hs << " vs " << vs << endl; + + // recalculate total speed + if ( vs == 0 && hs == 0) + speed = 0; + else + speed = sqrt( vs * vs + hs * hs) / SG_KT_TO_FPS; + + // recalculate elevation and azimuth (velocity vectors) + _elevation = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES; + _azimuth = atan2((_speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps), + (_speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)) + * SG_RADIANS_TO_DEGREES; + + // rationalise azimuth + if (_azimuth < 0) + _azimuth += 360; + + if (_aero_stabilised) { // we simulate rotational moment of inertia by using a filter + //cout<< "_aero_stabilised " << hdg << " az " << _azimuth << endl; + const double coeff = 0.9; + + // we assume a symetrical MI about the pitch and yaw axis + setPch(_elevation, dt, coeff); + setHdg(_azimuth, dt, coeff); + } + else if (_force_stabilised) { // we simulate rotational moment of inertia by using a filter + //cout<< "_force_stabilised "<< endl; + + const double coeff = 0.9; + double ratio = h_force_lbs/(_mass * slugs_to_lbs); + + if (ratio > 1) ratio = 1; + if (ratio < -1) ratio = -1; + + double force_pitch = acos(ratio) * SG_RADIANS_TO_DEGREES; + + if (force_pitch <= force_elevation_deg) + force_pitch = force_elevation_deg; + + // we assume a symetrical MI about the pitch and yaw axis + setPch(force_pitch,dt, coeff); + setHdg(_azimuth, dt, coeff); + } + + // Do impacts and collisions + if (_report_impact && !_impact_reported) + handle_impact(); + + if (_report_collision && !_collision_reported) + handle_collision(); + + // Set destruction flag if altitude less than sea level -1000 + if (altitude_ft < -1000.0 && life != -1) + setDie(true); +} + +double FGAIBallistic::_getTime() const { + return _life_timer; } +void FGAIBallistic::setTime(double s) { + _life_timer = s; +} + +void FGAIBallistic::handleEndOfLife(double elevation) { + report_impact(elevation); + + // Make the submodel invisible if the submodel is immortal, otherwise kill it if it has no subsubmodels + if (life == -1) { + invisible = true; + } + else if (_subID == 0) { + // Kill the AIObject if there is no subsubmodel + setDie(true); + } +} + +void FGAIBallistic::handle_impact() { + // Try terrain intersection + double start = pos.getElevationM() + 100; + + if (!getHtAGL(start)) + return; + + if (_ht_agl_ft <= 0) { + SG_LOG(SG_AI, SG_DEBUG, "AIBallistic: terrain impact material" << _mat_name); + _impact_reported = true; + handleEndOfLife(_elevation_m); + } +} + +void FGAIBallistic::handle_expiry() { + _expiry_reported = true; + handleEndOfLife(pos.getElevationM()); +} + +void FGAIBallistic::handle_collision() +{ + const FGAIBase *object = manager->calcCollision(pos.getElevationFt(), + pos.getLatitudeDeg(),pos.getLongitudeDeg(), _fuse_range); + + if (object) { + report_impact(pos.getElevationM(), object); + _collision_reported = true; + } +} + +void FGAIBallistic::report_impact(double elevation, const FGAIBase *object) +{ + _impact_lat = pos.getLatitudeDeg(); + _impact_lon = pos.getLongitudeDeg(); + _impact_elev = elevation; + _impact_speed = speed * SG_KT_TO_MPS; + _impact_hdg = hdg; + _impact_pitch = pitch; + _impact_roll = roll; + + SGPropertyNode *n = props->getNode("impact", true); + + if (object) + n->setStringValue("type", object->getTypeString()); + else + n->setStringValue("type", "terrain"); + + SG_LOG(SG_AI, SG_DEBUG, "AIBallistic: object impact " << _name + << " lon " <<_impact_lon << " lat " <<_impact_lat << " sec " << _life_timer); + + n->setDoubleValue("longitude-deg", _impact_lon); + n->setDoubleValue("latitude-deg", _impact_lat); + n->setDoubleValue("elevation-m", _impact_elev); + n->setDoubleValue("heading-deg", _impact_hdg); + n->setDoubleValue("pitch-deg", _impact_pitch); + n->setDoubleValue("roll-deg", _impact_roll); + n->setDoubleValue("speed-mps", _impact_speed); + + _impact_report_node->setStringValue(props->getPath()); +} + +SGVec3d FGAIBallistic::getCartHitchPos() const { + // convert geodetic positions to geocentered + SGVec3d cartuserPos = globals->get_aircraft_position_cart(); + + //SGVec3d cartPos = getCartPos(); + + // Transform to the right coordinate frame, configuration is done in + // the x-forward, y-right, z-up coordinates (feet), computation + // in the simulation usual body x-forward, y-right, z-down coordinates + // (meters) ) + SGVec3d _off(_x_offset * SG_FEET_TO_METER, + _y_offset * SG_FEET_TO_METER, + -_z_offset * SG_FEET_TO_METER); + + // Transform the user position to the horizontal local coordinate system. + SGQuatd hlTrans = SGQuatd::fromLonLat(globals->get_aircraft_position()); + + // and postrotate the orientation of the user model wrt the horizontal + // local frame + hlTrans *= SGQuatd::fromYawPitchRollDeg( + manager->get_user_heading(), + manager->get_user_pitch(), + manager->get_user_roll()); + + // The offset converted to the usual body fixed coordinate system + // rotated to the earth-fixed coordinates axis + SGVec3d off = hlTrans.backTransform(_off); + + // Add the position offset of the user model to get the geocentered position + SGVec3d offsetPos = cartuserPos + off; + return offsetPos; +} + +void FGAIBallistic::setOffsetPos(SGGeod inpos, double heading, double pitch, double roll) { + // Convert the hitch geocentered position to geodetic + SGVec3d cartoffsetPos = getCartOffsetPos(inpos, heading, pitch, roll); + SGGeodesy::SGCartToGeod(cartoffsetPos, _offsetpos); +} + +double FGAIBallistic::getDistanceToHitch() const { + //calculate the distance load to hitch + SGVec3d carthitchPos = getCartHitchPos(); + SGVec3d cartPos = getCartPos(); + + SGVec3d diff = carthitchPos - cartPos; + double distance = norm(diff); + return distance * SG_METER_TO_FEET; +} + +double FGAIBallistic::getElevToHitch() const { + // now the angle, positive angles are upwards + double distance = getDistanceToHitch() * SG_FEET_TO_METER; + double angle = 0; + double daltM = _offsetpos.getElevationM() - pos.getElevationM(); + + if (fabs(distance) < SGLimits::min()) { + angle = 0; + } else { + double sAngle = daltM/distance; + sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); + angle = SGMiscd::rad2deg(asin(sAngle)); + } + + return angle; +} + +double FGAIBallistic::getBearingToHitch() const { + //calculate the bearing and range of the second pos from the first + double distance = getDistanceToHitch() * SG_FEET_TO_METER; + double az1, az2; + + geo_inverse_wgs_84(pos, _offsetpos, &az1, &az2, &distance); + + return az1; +} + +double FGAIBallistic::getRelBrgHitchToUser() const { + //calculate the relative bearing + double az1, az2, distance; + + geo_inverse_wgs_84(_offsetpos, globals->get_aircraft_position(), &az1, &az2, &distance); + + double rel_brg = az1 - hdg; + + SG_NORMALIZE_RANGE(rel_brg, -180.0, 180.0); + + return rel_brg; +} + +double FGAIBallistic::getElevHitchToUser() const { + // Calculate the distance from the user position + SGVec3d carthitchPos = getCartHitchPos(); + SGVec3d cartuserPos = globals->get_aircraft_position_cart(); + + SGVec3d diff = cartuserPos - carthitchPos; + + double distance = norm(diff); + double angle = 0; + + double daltM = globals->get_aircraft_position().getElevationM() - _offsetpos.getElevationM(); + + // Now the angle, positive angles are upwards + if (fabs(distance) < SGLimits::min()) { + angle = 0; + } + else { + double sAngle = daltM/distance; + sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); + angle = SGMiscd::rad2deg(asin(sAngle)); + } + + return angle; +} + +void FGAIBallistic::setTgtOffsets(double dt, double coeff) { + double c = dt / (coeff + dt); + + _x_offset = (_tgt_x_offset * c) + (_x_offset * (1 - c)); + _y_offset = (_tgt_y_offset * c) + (_y_offset * (1 - c)); + _z_offset = (_tgt_z_offset * c) + (_z_offset * (1 - c)); +} + +void FGAIBallistic::calcVSHS() { + // Calculate vertical and horizontal speed components + double speed_fps = speed * SG_KT_TO_FPS; + + if (speed == 0.0) { + hs = vs = 0.0; + } + else { + vs = sin( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps; + hs = cos( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps; + } +} + +void FGAIBallistic::calcNE() { + // Resolve horizontal speed into north and east components: + _speed_north_fps = cos(_azimuth / SG_RADIANS_TO_DEGREES) * hs; + _speed_east_fps = sin(_azimuth / SG_RADIANS_TO_DEGREES) * hs; + + // Convert horizontal speed (fps) to degrees per second + speed_north_deg_sec = _speed_north_fps / ft_per_deg_lat; + speed_east_deg_sec = _speed_east_fps / ft_per_deg_lon; +} + +SGVec3d FGAIBallistic::getCartOffsetPos(SGGeod inpos, double user_heading, + double user_pitch, double user_roll + ) const { + // Convert geodetic positions to geocentered + SGVec3d cartuserPos = SGVec3d::fromGeod(inpos); + + // Transform to the right coordinate frame, configuration is done in + // the x-forward, y-right, z-up coordinates (feet), computation + // in the simulation usual body x-forward, y-right, z-down coordinates + // (meters) ) + SGVec3d _off(_x_offset * SG_FEET_TO_METER, + _y_offset * SG_FEET_TO_METER, + -_z_offset * SG_FEET_TO_METER); + + // Transform the user position to the horizontal local coordinate system. + SGQuatd hlTrans = SGQuatd::fromLonLat(inpos); + + // And postrotate the orientation of the user model wrt the horizontal + // local frame + hlTrans *= SGQuatd::fromYawPitchRollDeg( + user_heading, + user_pitch, + user_roll); + + // The offset converted to the usual body fixed coordinate system + // rotated to the earth-fixed coordinates axis + SGVec3d off = hlTrans.backTransform(_off); + + // Add the position offset of the user model to get the geocentered position + SGVec3d offsetPos = cartuserPos + off; + + return offsetPos; +} + +void FGAIBallistic::setOffsetVelocity(double dt, SGGeod offsetpos) { + // Calculate the distance from the previous offset position + SGVec3d cartoffsetPos = SGVec3d::fromGeod(offsetpos); + SGVec3d diff = cartoffsetPos - _oldcartoffsetPos; + + double distance = norm(diff); + // Calculate speed knots + speed = (distance / dt) * SG_MPS_TO_KT; + + // Now calulate the angle between the old and current postion positions (degrees) + double angle = 0; + double daltM = offsetpos.getElevationM() - _oldoffsetpos.getElevationM(); + + if (fabs(distance) < SGLimits::min()) { + angle = 0; + } + else { + double sAngle = daltM / distance; + sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); + angle = SGMiscd::rad2deg(asin(sAngle)); + } + + _elevation = angle; + + // Calculate vertical and horizontal speed components + calcVSHS(); + + // Calculate the bearing of the new offset position from the old + // Don't do this if speed is low + //cout << "speed " << speed << endl; + if (speed > 0.1) { + double az1, az2, dist; + geo_inverse_wgs_84(_oldoffsetpos, offsetpos, &az1, &az2, &dist); + _azimuth = az1; + //cout << "offset az " << _azimuth << endl; + } + else { + _azimuth = hdg; + //cout << " slow offset az " << _azimuth << endl; + } + + // Resolve horizontal speed into north and east components + calcNE(); + + // And finally store the new values + _oldcartoffsetPos = cartoffsetPos; + _oldoffsetpos = offsetpos; +}