X-Git-Url: https://git.mxchange.org/?a=blobdiff_plain;f=src%2FFDM%2FJSBSim%2Fmodels%2FFGPropagate.cpp;h=51bc472d22fbdd7ed4d49f72ff9129fd9b7a6c44;hb=a302cdc1cbb3c147e7c862b484cdd5d86f30a29c;hp=a698b542cd78e4361d5e1c9ae3dacce30e4eddf7;hpb=10366f4f1b91bfb037060a3f02d5c4056edac6c5;p=flightgear.git diff --git a/src/FDM/JSBSim/models/FGPropagate.cpp b/src/FDM/JSBSim/models/FGPropagate.cpp index a698b542c..51bc472d2 100644 --- a/src/FDM/JSBSim/models/FGPropagate.cpp +++ b/src/FDM/JSBSim/models/FGPropagate.cpp @@ -48,6 +48,7 @@ COMMENTS, REFERENCES, and NOTES Wiley & Sons, 1979 ISBN 0-471-03032-5 [5] Bernard Etkin, "Dynamics of Flight, Stability and Control", Wiley & Sons, 1982 ISBN 0-471-08936-2 +[6] Erin Catto, "Iterative Dynamics with Temporal Coherence", February 22, 2005 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INCLUDES @@ -70,31 +71,38 @@ using namespace std; namespace JSBSim { -static const char *IdSrc = "$Id: FGPropagate.cpp,v 1.55 2010/07/09 04:11:45 jberndt Exp $"; +static const char *IdSrc = "$Id: FGPropagate.cpp,v 1.88 2011/05/20 03:18:36 jberndt Exp $"; static const char *IdHdr = ID_PROPAGATE; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CLASS IMPLEMENTATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ -FGPropagate::FGPropagate(FGFDMExec* fdmex) : FGModel(fdmex) +FGPropagate::FGPropagate(FGFDMExec* fdmex) + : FGModel(fdmex), + LocalTerrainRadius(0), + SeaLevelRadius(0), + VehicleRadius(0) { Debug(0); Name = "FGPropagate"; gravType = gtWGS84; - vPQRdot.InitMatrix(); + vPQRidot.InitMatrix(); vQtrndot = FGQuaternion(0,0,0); - vUVWdot.InitMatrix(); + vUVWidot.InitMatrix(); vInertialVelocity.InitMatrix(); - integrator_rotational_rate = eAdamsBashforth2; - integrator_translational_rate = eTrapezoidal; - integrator_rotational_position = eAdamsBashforth2; - integrator_translational_position = eTrapezoidal; + /// These define the indices use to select the various integrators. + // eNone = 0, eRectEuler, eTrapezoidal, eAdamsBashforth2, eAdamsBashforth3, eAdamsBashforth4}; - VState.dqPQRdot.resize(4, FGColumnVector3(0.0,0.0,0.0)); - VState.dqUVWdot.resize(4, FGColumnVector3(0.0,0.0,0.0)); + integrator_rotational_rate = eRectEuler; + integrator_translational_rate = eAdamsBashforth2; + integrator_rotational_position = eRectEuler; + integrator_translational_position = eAdamsBashforth3; + + VState.dqPQRidot.resize(4, FGColumnVector3(0.0,0.0,0.0)); + VState.dqUVWidot.resize(4, FGColumnVector3(0.0,0.0,0.0)); VState.dqInertialVelocity.resize(4, FGColumnVector3(0.0,0.0,0.0)); VState.dqQtrndot.resize(4, FGQuaternion(0.0,0.0,0.0)); @@ -113,29 +121,27 @@ FGPropagate::~FGPropagate(void) bool FGPropagate::InitModel(void) { - if (!FGModel::InitModel()) return false; - // For initialization ONLY: - SeaLevelRadius = LocalTerrainRadius = Inertial->GetRefRadius(); + SeaLevelRadius = LocalTerrainRadius = FDMExec->GetInertial()->GetRefRadius(); VState.vLocation.SetRadius( LocalTerrainRadius + 4.0 ); - VState.vLocation.SetEllipse(Inertial->GetSemimajor(), Inertial->GetSemiminor()); - vOmegaEarth = FGColumnVector3( 0.0, 0.0, Inertial->omega() ); // Earth rotation vector + VState.vLocation.SetEllipse(FDMExec->GetInertial()->GetSemimajor(), FDMExec->GetInertial()->GetSemiminor()); + vOmegaEarth = FGColumnVector3( 0.0, 0.0, FDMExec->GetInertial()->omega() ); // Earth rotation vector - vPQRdot.InitMatrix(); + vPQRidot.InitMatrix(); vQtrndot = FGQuaternion(0,0,0); - vUVWdot.InitMatrix(); + vUVWidot.InitMatrix(); vInertialVelocity.InitMatrix(); - VState.dqPQRdot.resize(4, FGColumnVector3(0.0,0.0,0.0)); - VState.dqUVWdot.resize(4, FGColumnVector3(0.0,0.0,0.0)); + VState.dqPQRidot.resize(4, FGColumnVector3(0.0,0.0,0.0)); + VState.dqUVWidot.resize(4, FGColumnVector3(0.0,0.0,0.0)); VState.dqInertialVelocity.resize(4, FGColumnVector3(0.0,0.0,0.0)); VState.dqQtrndot.resize(4, FGColumnVector3(0.0,0.0,0.0)); - integrator_rotational_rate = eAdamsBashforth2; - integrator_translational_rate = eTrapezoidal; - integrator_rotational_position = eAdamsBashforth2; - integrator_translational_position = eTrapezoidal; + integrator_rotational_rate = eRectEuler; + integrator_translational_rate = eAdamsBashforth2; + integrator_rotational_position = eRectEuler; + integrator_translational_position = eAdamsBashforth3; return true; } @@ -147,9 +153,6 @@ void FGPropagate::SetInitialState(const FGInitialCondition *FGIC) SetSeaLevelRadius(FGIC->GetSeaLevelRadiusFtIC()); SetTerrainElevation(FGIC->GetTerrainElevationFtIC()); - VehicleRadius = GetRadius(); - radInv = 1.0/VehicleRadius; - // Initialize the State Vector elements and the transformation matrices // Set the position lat/lon/radius @@ -157,16 +160,14 @@ void FGPropagate::SetInitialState(const FGInitialCondition *FGIC) FGIC->GetLatitudeRadIC(), FGIC->GetAltitudeASLFtIC() + FGIC->GetSeaLevelRadiusFtIC() ); - VState.vLocation.SetEarthPositionAngle(Inertial->GetEarthPositionAngle()); + VState.vLocation.SetEarthPositionAngle(FDMExec->GetInertial()->GetEarthPositionAngle()); - Ti2ec = GetTi2ec(); // ECI to ECEF transform - Tec2i = Ti2ec.Transposed(); // ECEF to ECI frame transform - - Tl2ec = GetTl2ec(); // local to ECEF transform - Tec2l = Tl2ec.Transposed(); // ECEF to local frame transform + Ti2ec = VState.vLocation.GetTi2ec(); // ECI to ECEF transform + Tec2i = Ti2ec.Transposed(); // ECEF to ECI frame transform - Ti2l = GetTi2l(); - Tl2i = Ti2l.Transposed(); + VState.vInertialPosition = Tec2i * VState.vLocation; + + UpdateLocationMatrices(); // Set the orientation from the euler angles (is normalized within the // constructor). The Euler angles represent the orientation of the body @@ -176,63 +177,31 @@ void FGPropagate::SetInitialState(const FGInitialCondition *FGIC) FGIC->GetPsiRadIC() ); VState.qAttitudeECI = Ti2l.GetQuaternion()*VState.qAttitudeLocal; - - Ti2b = GetTi2b(); // ECI to body frame transform - Tb2i = Ti2b.Transposed(); // body to ECI frame transform - - Tl2b = VState.qAttitudeLocal; // local to body frame transform - Tb2l = Tl2b.Transposed(); // body to local frame transform - - Tec2b = Tl2b * Tec2l; // ECEF to body frame transform - Tb2ec = Tec2b.Transposed(); // body to ECEF frame tranform + UpdateBodyMatrices(); // Set the velocities in the instantaneus body frame VState.vUVW = FGColumnVector3( FGIC->GetUBodyFpsIC(), FGIC->GetVBodyFpsIC(), FGIC->GetWBodyFpsIC() ); - VState.vInertialPosition = Tec2i * VState.vLocation; - // Compute the local frame ECEF velocity vVel = Tb2l * VState.vUVW; - // Refer to Stevens and Lewis, 1.5-14a, pg. 49. - // This is the rotation rate of the "Local" frame, expressed in the local frame. + // Recompute the LocalTerrainRadius. + RecomputeLocalTerrainRadius(); - FGColumnVector3 vOmegaLocal = FGColumnVector3( - radInv*vVel(eEast), - -radInv*vVel(eNorth), - -radInv*vVel(eEast)*VState.vLocation.GetTanLatitude() ); + VehicleRadius = GetRadius(); // Set the angular velocities of the body frame relative to the ECEF frame, - // expressed in the body frame. Effectively, this is: - // w_b/e = w_b/l + w_l/e + // expressed in the body frame. VState.vPQR = FGColumnVector3( FGIC->GetPRadpsIC(), FGIC->GetQRadpsIC(), - FGIC->GetRRadpsIC() ) + Tl2b*vOmegaLocal; + FGIC->GetRRadpsIC() ); VState.vPQRi = VState.vPQR + Ti2b * vOmegaEarth; // Make an initial run and set past values - CalculatePQRdot(); // Angular rate derivative - CalculateUVWdot(); // Translational rate derivative - CalculateQuatdot(); // Angular orientation derivative - CalculateInertialVelocity(); // Translational position derivative - - // Initialize past values deques - VState.dqPQRdot.clear(); - VState.dqUVWdot.clear(); - VState.dqInertialVelocity.clear(); - VState.dqQtrndot.clear(); - for (int i=0; i<4; i++) { - VState.dqPQRdot.push_front(vPQRdot); - VState.dqUVWdot.push_front(vUVWdot); - VState.dqInertialVelocity.push_front(VState.vInertialVelocity); - VState.dqQtrndot.push_front(vQtrndot); - } - - // Recompute the LocalTerrainRadius. - RecomputeLocalTerrainRadius(); + InitializeDerivatives(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -255,12 +224,10 @@ Inertial. */ -bool FGPropagate::Run(void) +bool FGPropagate::Run(bool Holding) { -static int ctr; - - if (FGModel::Run()) return true; // Fast return if we have nothing to do ... - if (FDMExec->Holding()) return false; + if (FGModel::Run(Holding)) return true; // Fast return if we have nothing to do ... + if (Holding) return false; double dt = FDMExec->GetDeltaT()*rate; // The 'stepsize' @@ -269,44 +236,47 @@ static int ctr; // Calculate state derivatives CalculatePQRdot(); // Angular rate derivative CalculateUVWdot(); // Translational rate derivative + ResolveFrictionForces(dt); // Update rate derivatives with friction forces CalculateQuatdot(); // Angular orientation derivative - CalculateInertialVelocity(); // Translational position derivative // Propagate rotational / translational velocity, angular /translational position, respectively. - Integrate(VState.vPQRi, vPQRdot, VState.dqPQRdot, dt, integrator_rotational_rate); - Integrate(VState.vUVW, vUVWdot, VState.dqUVWdot, dt, integrator_translational_rate); + + Integrate(VState.vPQRi, vPQRidot, VState.dqPQRidot, dt, integrator_rotational_rate); Integrate(VState.qAttitudeECI, vQtrndot, VState.dqQtrndot, dt, integrator_rotational_position); Integrate(VState.vInertialPosition, VState.vInertialVelocity, VState.dqInertialVelocity, dt, integrator_translational_position); + Integrate(VState.vInertialVelocity, vUVWidot, VState.dqUVWidot, dt, integrator_translational_rate); - VState.qAttitudeECI.Normalize(); // Normalize the ECI Attitude quaternion + // CAUTION : the order of the operations below is very important to get transformation + // matrices that are consistent with the new state of the vehicle - VState.vLocation.SetEarthPositionAngle(Inertial->GetEarthPositionAngle()); // Update the Earth position angle (EPA) + // 1. Update the Earth position angle (EPA) + VState.vLocation.SetEarthPositionAngle(FDMExec->GetInertial()->GetEarthPositionAngle()); - // Update the "Location-based" transformation matrices from the vLocation vector. + // 2. Update the Ti2ec and Tec2i transforms from the updated EPA + Ti2ec = VState.vLocation.GetTi2ec(); // ECI to ECEF transform + Tec2i = Ti2ec.Transposed(); // ECEF to ECI frame transform - Ti2ec = GetTi2ec(); // ECI to ECEF transform - Tec2i = Ti2ec.Transposed(); // ECEF to ECI frame transform - Tl2ec = GetTl2ec(); // local to ECEF transform - Tec2l = Tl2ec.Transposed(); // ECEF to local frame transform - Ti2l = GetTi2l(); - Tl2i = Ti2l.Transposed(); + // 3. Update the location from the updated Ti2ec and inertial position + VState.vLocation = Ti2ec*VState.vInertialPosition; - // Update the "Orientation-based" transformation matrices from the orientation quaternion + // 4. Update the other "Location-based" transformation matrices from the updated + // vLocation vector. + UpdateLocationMatrices(); - Ti2b = GetTi2b(); // ECI to body frame transform - Tb2i = Ti2b.Transposed(); // body to ECI frame transform - Tl2b = Ti2b*Tl2i; // local to body frame transform - Tb2l = Tl2b.Transposed(); // body to local frame transform - Tec2b = Tl2b * Tec2l; // ECEF to body frame transform - Tb2ec = Tec2b.Transposed(); // body to ECEF frame tranform + // 5. Normalize the ECI Attitude quaternion + VState.qAttitudeECI.Normalize(); - // Set auxililary state variables - VState.vLocation = Ti2ec*VState.vInertialPosition; + // 6. Update the "Orientation-based" transformation matrices from the updated + // orientation quaternion and vLocation vector. + UpdateBodyMatrices(); + + // Translational position derivative (velocities are integrated in the inertial frame) + CalculateUVW(); + + // Set auxilliary state variables RecomputeLocalTerrainRadius(); - // Calculate current aircraft radius from center of planet - VehicleRadius = VState.vInertialPosition.Magnitude(); - radInv = 1.0/VehicleRadius; + VehicleRadius = GetRadius(); // Calculate current aircraft radius from center of planet VState.vPQR = VState.vPQRi - Ti2b * vOmegaEarth; @@ -337,15 +307,16 @@ static int ctr; void FGPropagate::CalculatePQRdot(void) { - const FGColumnVector3& vMoments = Aircraft->GetMoments(); // current moments - const FGMatrix33& J = MassBalance->GetJ(); // inertia matrix - const FGMatrix33& Jinv = MassBalance->GetJinv(); // inertia matrix inverse + const FGColumnVector3& vMoments = FDMExec->GetAircraft()->GetMoments(); // current moments + const FGMatrix33& J = FDMExec->GetMassBalance()->GetJ(); // inertia matrix + const FGMatrix33& Jinv = FDMExec->GetMassBalance()->GetJinv(); // inertia matrix inverse // Compute body frame rotational accelerations based on the current body // moments and the total inertial angular velocity expressed in the body // frame. - vPQRdot = Jinv*(vMoments - VState.vPQRi*(J*VState.vPQRi)); + vPQRidot = Jinv*(vMoments - VState.vPQRi*(J*VState.vPQRi)); + vPQRdot = vPQRidot - VState.vPQRi * (Ti2b * vOmegaEarth); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -362,10 +333,10 @@ void FGPropagate::CalculateQuatdot(void) } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -// This set of calculations results in the body frame accelerations being -// computed. -// Compute body frame accelerations based on the current body forces. -// Include centripetal and coriolis accelerations. +// This set of calculations results in the body and inertial frame accelerations +// being computed. +// Compute body and inertial frames accelerations based on the current body +// forces including centripetal and coriolis accelerations for the former. // vOmegaEarth is the Earth angular rate - expressed in the inertial frame - // so it has to be transformed to the body frame. More completely, // vOmegaEarth is the rate of the ECEF frame relative to the Inertial @@ -380,27 +351,26 @@ void FGPropagate::CalculateQuatdot(void) void FGPropagate::CalculateUVWdot(void) { - double mass = MassBalance->GetMass(); // mass - const FGColumnVector3& vForces = Aircraft->GetForces(); // current forces + double mass = FDMExec->GetMassBalance()->GetMass(); // mass + const FGColumnVector3& vForces = FDMExec->GetAircraft()->GetForces(); // current forces vUVWdot = vForces/mass - (VState.vPQR + 2.0*(Ti2b *vOmegaEarth)) * VState.vUVW; // Include Centripetal acceleration. - if (!GroundReactions->GetWOW() && Aircraft->GetHoldDown() == 0) { - vUVWdot -= Ti2b * (vOmegaEarth*(vOmegaEarth*VState.vInertialPosition)); - } + vUVWdot -= Ti2b * (vOmegaEarth*(vOmegaEarth*VState.vInertialPosition)); // Include Gravitation accel switch (gravType) { case gtStandard: - vGravAccel = Tl2b * FGColumnVector3( 0.0, 0.0, Inertial->GetGAccel(VehicleRadius) ); + vGravAccel = Tl2b * FGColumnVector3( 0.0, 0.0, FDMExec->GetInertial()->GetGAccel(VehicleRadius) ); break; case gtWGS84: - vGravAccel = Tec2b * Inertial->GetGravityJ2(VState.vLocation); + vGravAccel = Tec2b * FDMExec->GetInertial()->GetGravityJ2(VState.vLocation); break; } vUVWdot += vGravAccel; + vUVWidot = Tb2i * (vForces/mass + vGravAccel); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -415,6 +385,16 @@ void FGPropagate::CalculateInertialVelocity(void) VState.vInertialVelocity = Tb2i * VState.vUVW + (vOmegaEarth * VState.vInertialPosition); } +//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + // Transform the velocity vector of the inertial frame to be expressed in the + // body frame relative to the origin (Earth center), and substract the vehicle + // velocity contribution due to the rotation of the planet. + +void FGPropagate::CalculateUVW(void) +{ + VState.vUVW = Ti2b * (VState.vInertialVelocity - (vOmegaEarth * VState.vInertialPosition)); +} + //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGPropagate::Integrate( FGColumnVector3& Integrand, @@ -464,33 +444,254 @@ void FGPropagate::Integrate( FGQuaternion& Integrand, break; case eAdamsBashforth4: Integrand += (1/24.0)*dt*(55.0*ValDot[0] - 59.0*ValDot[1] + 37.0*ValDot[2] - 9.0*ValDot[3]); break; - case eNone: // do nothing, freeze translational rate + case eNone: // do nothing, freeze rotational rate + break; + } +} + +//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +// Evaluates the rates (translation or rotation) that the friction forces have +// to resist to. This includes the external forces and moments as well as the +// relative movement between the aircraft and the ground. +// Erin Catto's paper (see ref [6]) only supports Euler integration scheme and +// this algorithm has been adapted to handle the multistep algorithms that +// JSBSim supports (i.e. Trapezoidal, Adams-Bashforth 2, 3 and 4). The capacity +// to handle the multistep integration schemes adds some complexity but it +// significantly helps stabilizing the friction forces. + +void FGPropagate::EvaluateRateToResistTo(FGColumnVector3& vdot, + const FGColumnVector3& Val, + const FGColumnVector3& ValDot, + const FGColumnVector3& LocalTerrainVal, + deque & dqValDot, + const double dt, + const eIntegrateType integration_type) +{ + switch(integration_type) { + case eAdamsBashforth4: + vdot = ValDot + Ti2b * (-59.*dqValDot[0]+37.*dqValDot[1]-9.*dqValDot[2])/55.; + if (dt > 0.) // Zeroes out the relative movement between aircraft and ground + vdot += 24.*(Val - Tec2b * LocalTerrainVal) / (55.*dt); + break; + case eAdamsBashforth3: + vdot = ValDot + Ti2b * (-16.*dqValDot[0]+5.*dqValDot[1])/23.; + if (dt > 0.) // Zeroes out the relative movement between aircraft and ground + vdot += 12.*(Val - Tec2b * LocalTerrainVal) / (23.*dt); break; + case eAdamsBashforth2: + vdot = ValDot - Ti2b * dqValDot[0]/3.; + if (dt > 0.) // Zeroes out the relative movement between aircraft and ground + vdot += 2.*(Val - Tec2b * LocalTerrainVal) / (3.*dt); + break; + case eTrapezoidal: + vdot = ValDot + Ti2b * dqValDot[0]; + if (dt > 0.) // Zeroes out the relative movement between aircraft and ground + vdot += 2.*(Val - Tec2b * LocalTerrainVal) / dt; + break; + case eRectEuler: + vdot = ValDot; + if (dt > 0.) // Zeroes out the relative movement between aircraft and ground + vdot += (Val - Tec2b * LocalTerrainVal) / dt; + break; + case eNone: + break; + } +} + +//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +// Resolves the contact forces just before integrating the EOM. +// This routine is using Lagrange multipliers and the projected Gauss-Seidel +// (PGS) method. +// Reference: See Erin Catto, "Iterative Dynamics with Temporal Coherence", +// February 22, 2005 +// In JSBSim there is only one rigid body (the aircraft) and there can be +// multiple points of contact between the aircraft and the ground. As a +// consequence our matrix J*M^-1*J^T is not sparse and the algorithm described +// in Catto's paper has been adapted accordingly. +// The friction forces are resolved in the body frame relative to the origin +// (Earth center). + +void FGPropagate::ResolveFrictionForces(double dt) +{ + const double invMass = 1.0 / FDMExec->GetMassBalance()->GetMass(); + const FGMatrix33& Jinv = FDMExec->GetMassBalance()->GetJinv(); + vector JacF, JacM; + vector lambda, lambdaMin, lambdaMax; + FGColumnVector3 vdot, wdot; + FGColumnVector3 Fc, Mc; + int n = 0; + + // Compiles data from the ground reactions to build up the jacobian matrix + for (MultiplierIterator it=MultiplierIterator(FDMExec->GetGroundReactions()); *it; ++it, n++) { + JacF.push_back((*it)->ForceJacobian); + JacM.push_back((*it)->MomentJacobian); + lambda.push_back((*it)->value); + lambdaMax.push_back((*it)->Max); + lambdaMin.push_back((*it)->Min); + } + + // If no gears are in contact with the ground then return + if (!n) return; + + vector a(n*n); // Will contain J*M^-1*J^T + vector rhs(n); + + // Assemble the linear system of equations + for (int i=0; i < n; i++) { + for (int j=0; j < i; j++) + a[i*n+j] = a[j*n+i]; // Takes advantage of the symmetry of J^T*M^-1*J + for (int j=i; j < n; j++) + a[i*n+j] = DotProduct(JacF[i],invMass*JacF[j])+DotProduct(JacM[i],Jinv*JacM[j]); + } + + // Assemble the RHS member + + // Translation + EvaluateRateToResistTo(vdot, VState.vUVW, vUVWdot, LocalTerrainVelocity, + VState.dqUVWidot, dt, integrator_translational_rate); + + // Rotation + EvaluateRateToResistTo(wdot, VState.vPQR, vPQRdot, LocalTerrainAngularVelocity, + VState.dqPQRidot, dt, integrator_rotational_rate); + + // Prepare the linear system for the Gauss-Seidel algorithm : + // 1. Compute the right hand side member 'rhs' + // 2. Divide every line of 'a' and 'rhs' by a[i,i]. This is in order to save + // a division computation at each iteration of Gauss-Seidel. + for (int i=0; i < n; i++) { + double d = 1.0 / a[i*n+i]; + + rhs[i] = -(DotProduct(JacF[i],vdot)+DotProduct(JacM[i],wdot))*d; + for (int j=0; j < n; j++) + a[i*n+j] *= d; + } + + // Resolve the Lagrange multipliers with the projected Gauss-Seidel method + for (int iter=0; iter < 50; iter++) { + double norm = 0.; + + for (int i=0; i < n; i++) { + double lambda0 = lambda[i]; + double dlambda = rhs[i]; + + for (int j=0; j < n; j++) + dlambda -= a[i*n+j]*lambda[j]; + + lambda[i] = Constrain(lambdaMin[i], lambda0+dlambda, lambdaMax[i]); + dlambda = lambda[i] - lambda0; + + norm += fabs(dlambda); + } + + if (norm < 1E-5) break; } + + // Calculate the total friction forces and moments + + Fc.InitMatrix(); + Mc.InitMatrix(); + + for (int i=0; i< n; i++) { + Fc += lambda[i]*JacF[i]; + Mc += lambda[i]*JacM[i]; + } + + vUVWdot += invMass * Fc; + vUVWidot += invMass * Tb2i * Fc; + vPQRdot += Jinv * Mc; + vPQRidot += Jinv * Mc; + + // Save the value of the Lagrange multipliers to accelerate the convergence + // of the Gauss-Seidel algorithm at next iteration. + int i = 0; + for (MultiplierIterator it=MultiplierIterator(FDMExec->GetGroundReactions()); *it; ++it) + (*it)->value = lambda[i++]; + + FDMExec->GetGroundReactions()->UpdateForcesAndMoments(); +} + +//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +void FGPropagate::UpdateLocationMatrices(void) +{ + Tl2ec = VState.vLocation.GetTl2ec(); // local to ECEF transform + Tec2l = Tl2ec.Transposed(); // ECEF to local frame transform + Ti2l = VState.vLocation.GetTi2l(); // ECI to local frame transform + Tl2i = Ti2l.Transposed(); // local to ECI transform +} + +//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +void FGPropagate::UpdateBodyMatrices(void) +{ + Ti2b = VState.qAttitudeECI.GetT(); // ECI to body frame transform + Tb2i = Ti2b.Transposed(); // body to ECI frame transform + Tl2b = Ti2b * Tl2i; // local to body frame transform + Tb2l = Tl2b.Transposed(); // body to local frame transform + Tec2b = Ti2b * Tec2i; // ECEF to body frame transform + Tb2ec = Tec2b.Transposed(); // body to ECEF frame tranform } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGPropagate::SetInertialOrientation(FGQuaternion Qi) { VState.qAttitudeECI = Qi; + VState.qAttitudeECI.Normalize(); + UpdateBodyMatrices(); + VState.qAttitudeLocal = Tl2b.GetQuaternion(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGPropagate::SetInertialVelocity(FGColumnVector3 Vi) { VState.vInertialVelocity = Vi; + CalculateUVW(); + vVel = Tb2l * VState.vUVW; +} + +//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +void FGPropagate::SetInertialRates(FGColumnVector3 vRates) { + VState.vPQRi = Ti2b * vRates; + VState.vPQR = VState.vPQRi - Ti2b * vOmegaEarth; +} + +//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +void FGPropagate::InitializeDerivatives(void) +{ + // Make an initial run and set past values + CalculatePQRdot(); // Angular rate derivative + CalculateUVWdot(); // Translational rate derivative + ResolveFrictionForces(0.); // Update rate derivatives with friction forces + CalculateQuatdot(); // Angular orientation derivative + CalculateInertialVelocity(); // Translational position derivative + + // Initialize past values deques + VState.dqPQRidot.clear(); + VState.dqUVWidot.clear(); + VState.dqInertialVelocity.clear(); + VState.dqQtrndot.clear(); + for (int i=0; i<4; i++) { + VState.dqPQRidot.push_front(vPQRidot); + VState.dqUVWidot.push_front(vUVWidot); + VState.dqInertialVelocity.push_front(VState.vInertialVelocity); + VState.dqQtrndot.push_front(vQtrndot); + } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGPropagate::RecomputeLocalTerrainRadius(void) { + FGLocation contactloc; + FGColumnVector3 dv; double t = FDMExec->GetSimTime(); // Get the LocalTerrain radius. -// FDMExec->GetGroundCallback()->GetAGLevel(t, VState.vLocation, contactloc, dv, dv); -// LocalTerrainRadius = contactloc.GetRadius(); - LocalTerrainRadius = FDMExec->GetGroundCallback()->GetTerrainGeoCentRadius(); + FDMExec->GetGroundCallback()->GetAGLevel(t, VState.vLocation, contactloc, dv, + LocalTerrainVelocity, LocalTerrainAngularVelocity); + LocalTerrainRadius = contactloc.GetRadius(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -508,48 +709,91 @@ double FGPropagate::GetTerrainElevation(void) const return FDMExec->GetGroundCallback()->GetTerrainGeoCentRadius()-SeaLevelRadius; } -//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -//Todo: when should this be called - when should the new EPA be used to -// calculate the transformation matrix, so that the matrix is not a step -// ahead of the sim and the associated calculations? -const FGMatrix33& FGPropagate::GetTi2ec(void) -{ - return VState.vLocation.GetTi2ec(); -} - //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -const FGMatrix33& FGPropagate::GetTec2i(void) +double FGPropagate::GetDistanceAGL(void) const { - return VState.vLocation.GetTec2i(); + return VState.vLocation.GetRadius() - LocalTerrainRadius; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -void FGPropagate::SetAltitudeASL(double altASL) +void FGPropagate::SetVState(const VehicleState& vstate) { - VState.vLocation.SetRadius( altASL + SeaLevelRadius ); + VState.vLocation = vstate.vLocation; + VState.vLocation.SetEarthPositionAngle(FDMExec->GetInertial()->GetEarthPositionAngle()); + Ti2ec = VState.vLocation.GetTi2ec(); // useless ? + Tec2i = Ti2ec.Transposed(); + UpdateLocationMatrices(); + SetInertialOrientation(vstate.qAttitudeECI); + RecomputeLocalTerrainRadius(); + VehicleRadius = GetRadius(); + VState.vUVW = vstate.vUVW; + vVel = Tb2l * VState.vUVW; + VState.vPQR = vstate.vPQR; + VState.vPQRi = VState.vPQR + Ti2b * vOmegaEarth; + VState.vInertialPosition = vstate.vInertialPosition; + + InitializeDerivatives(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -double FGPropagate::GetLocalTerrainRadius(void) const +void FGPropagate::UpdateVehicleState(void) { - return LocalTerrainRadius; + RecomputeLocalTerrainRadius(); + VehicleRadius = GetRadius(); + VState.vInertialPosition = Tec2i * VState.vLocation; + UpdateLocationMatrices(); + UpdateBodyMatrices(); + vVel = Tb2l * VState.vUVW; + VState.qAttitudeLocal = Tl2b.GetQuaternion(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -double FGPropagate::GetDistanceAGL(void) const +void FGPropagate::SetLocation(const FGLocation& l) { - return VState.vLocation.GetRadius() - LocalTerrainRadius; + VState.vLocation = l; + VState.vLocation.SetEarthPositionAngle(FDMExec->GetInertial()->GetEarthPositionAngle()); + Ti2ec = VState.vLocation.GetTi2ec(); // useless ? + Tec2i = Ti2ec.Transposed(); + UpdateVehicleState(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -void FGPropagate::SetDistanceAGL(double tt) +void FGPropagate::DumpState(void) { - VState.vLocation.SetRadius( tt + LocalTerrainRadius ); + cout << endl; + cout << fgblue + << "------------------------------------------------------------------" << reset << endl; + cout << highint + << "State Report at sim time: " << FDMExec->GetSimTime() << " seconds" << reset << endl; + cout << " " << underon + << "Position" << underoff << endl; + cout << " ECI: " << VState.vInertialPosition.Dump(", ") << " (x,y,z, in ft)" << endl; + cout << " ECEF: " << VState.vLocation << " (x,y,z, in ft)" << endl; + cout << " Local: " << VState.vLocation.GetLatitudeDeg() + << ", " << VState.vLocation.GetLongitudeDeg() + << ", " << GetAltitudeASL() << " (lat, lon, alt in deg and ft)" << endl; + + cout << endl << " " << underon + << "Orientation" << underoff << endl; + cout << " ECI: " << VState.qAttitudeECI.GetEulerDeg().Dump(", ") << " (phi, theta, psi in deg)" << endl; + cout << " Local: " << VState.qAttitudeLocal.GetEulerDeg().Dump(", ") << " (phi, theta, psi in deg)" << endl; + + cout << endl << " " << underon + << "Velocity" << underoff << endl; + cout << " ECI: " << VState.vInertialVelocity.Dump(", ") << " (x,y,z in ft/s)" << endl; + cout << " ECEF: " << (Tb2ec * VState.vUVW).Dump(", ") << " (x,y,z in ft/s)" << endl; + cout << " Local: " << GetVel() << " (n,e,d in ft/sec)" << endl; + cout << " Body: " << GetUVW() << " (u,v,w in ft/sec)" << endl; + + cout << endl << " " << underon + << "Body Rates (relative to given frame, expressed in body frame)" << underoff << endl; + cout << " ECI: " << (VState.vPQRi*radtodeg).Dump(", ") << " (p,q,r in deg/s)" << endl; + cout << " ECEF: " << (VState.vPQR*radtodeg).Dump(", ") << " (p,q,r in deg/s)" << endl; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -658,7 +902,7 @@ void FGPropagate::Debug(int from) << reset << endl; cout << endl; cout << highint << " Earth Position Angle (deg): " << setw(8) << setprecision(3) << reset - << Inertial->GetEarthPositionAngleDeg() << endl; + << FDMExec->GetInertial()->GetEarthPositionAngleDeg() << endl; cout << endl; cout << highint << " Body velocity (ft/sec): " << setw(8) << setprecision(3) << reset << VState.vUVW << endl; cout << highint << " Local velocity (ft/sec): " << setw(8) << setprecision(3) << reset << vVel << endl;