X-Git-Url: https://git.mxchange.org/?a=blobdiff_plain;f=src%2FFDM%2FYASim%2FRotor.cpp;h=2a93a4457f4be5e9468ddad21d4784c31f455a4d;hb=d66903e9ad63b91182ccc25d9bb82f18f8dd98b6;hp=717cbb110c7c69fa2ee8268fb72984e05ef8d6b6;hpb=7986caf75b8bbdb49a36d439fccae64862ec79b2;p=flightgear.git diff --git a/src/FDM/YASim/Rotor.cpp b/src/FDM/YASim/Rotor.cpp index 717cbb110..2a93a4457 100644 --- a/src/FDM/YASim/Rotor.cpp +++ b/src/FDM/YASim/Rotor.cpp @@ -8,10 +8,10 @@ #include "Ground.hpp" #include "Rotor.hpp" -#include STL_IOSTREAM -#include STL_IOMANIP +#include +#include -SG_USING_STD(setprecision); +using std::setprecision; #ifdef TEST_DEBUG #include @@ -114,7 +114,7 @@ Rotor::Rotor() _airfoil_drag_coefficient0=0; _airfoil_drag_coefficient1=0; for(i=0; i<2; i++) - _global_ground[i] = 0; + _global_ground[i] = _tilt_center[i] = 0; _global_ground[2] = 1; _global_ground[3] = -1e3; _incidence_stall_zero_speed=18*pi/180.; @@ -137,6 +137,20 @@ Rotor::Rotor() _balance2=1; _properties_tied=0; _num_ground_contact_pos=0; + _directions_and_postions_dirty=true; + _tilt_yaw=0; + _tilt_roll=0; + _tilt_pitch=0; + _old_tilt_roll=0; + _old_tilt_pitch=0; + _old_tilt_yaw=0; + _min_tilt_yaw=0; + _min_tilt_pitch=0; + _min_tilt_roll=0; + _max_tilt_yaw=0; + _max_tilt_pitch=0; + _max_tilt_roll=0; + _downwash_factor=1; } Rotor::~Rotor() @@ -164,13 +178,16 @@ void Rotor::inititeration(float dt,float omegarel,float ddt_omegarel,float *rot) _omega=_omegan*_omegarel; _ddt_omega=_omegan*ddt_omegarel; int i; + float drot[3]; + updateDirectionsAndPositions(drot); + Math::add3(rot,drot,drot); for(i=0; i<_rotorparts.size(); i++) { float s = Math::sin(float(2*pi*i/_number_of_parts+(_phi-pi/2.)*(_ccw?1:-1))); float c = Math::cos(float(2*pi*i/_number_of_parts+(_phi-pi/2.)*(_ccw?1:-1))); Rotorpart* r = (Rotorpart*)_rotorparts.get(i); r->setOmega(_omega); r->setDdtOmega(_ddt_omega); - r->inititeration(dt,rot); + r->inititeration(dt,drot); r->setCyclic(_cyclicail*c+_cyclicele*s); } @@ -184,6 +201,13 @@ void Rotor::inititeration(float dt,float omegarel,float ddt_omegarel,float *rot) Math::mul3(Math::sin(_roll),side,help); Math::add3(_normal_with_yaw_roll,help,_normal_with_yaw_roll); + + //update balance + if ((_balance1*_balance2 < 0.97) && (_balance1>-1)) + { + _balance1-=(0.97-_balance1*_balance2)*(0.97-_balance1*_balance2)*0.005; + if (_balance1<-1) _balance1=-1; + } } float Rotor::calcStall(float incidence,float speed) @@ -247,11 +271,11 @@ int Rotor::getValueforFGSet(int j,char *text,float *f) if (j==0) { sprintf(text,"/rotors/%s/cone-deg", _name); - *f=( ((Rotorpart*)getRotorpart(0))->getrealAlpha() + *f=(_balance1>-1)?( ((Rotorpart*)getRotorpart(0))->getrealAlpha() +((Rotorpart*)getRotorpart(1*(_number_of_parts>>2)))->getrealAlpha() +((Rotorpart*)getRotorpart(2*(_number_of_parts>>2)))->getrealAlpha() +((Rotorpart*)getRotorpart(3*(_number_of_parts>>2)))->getrealAlpha() - )/4*180/pi; + )/4*180/pi:0; } else if (j==1) @@ -260,7 +284,7 @@ int Rotor::getValueforFGSet(int j,char *text,float *f) _roll = ( ((Rotorpart*)getRotorpart(0))->getrealAlpha() -((Rotorpart*)getRotorpart(2*(_number_of_parts>>2)))->getrealAlpha() )/2*(_ccw?-1:1); - *f=_roll *180/pi; + *f=(_balance1>-1)?_roll *180/pi:0; } else if (j==2) @@ -269,7 +293,7 @@ int Rotor::getValueforFGSet(int j,char *text,float *f) _yaw=( ((Rotorpart*)getRotorpart(1*(_number_of_parts>>2)))->getrealAlpha() -((Rotorpart*)getRotorpart(3*(_number_of_parts>>2)))->getrealAlpha() )/2; - *f=_yaw*180/pi; + *f=(_balance1>-1)?_yaw*180/pi:0; } else if (j==3) @@ -280,18 +304,18 @@ int Rotor::getValueforFGSet(int j,char *text,float *f) else if (j==4) { - sprintf(text,"/rotors/%s/debug/debugfge",_name); - *f=_f_ge; + sprintf(text,"/rotors/%s/tilt/pitch-deg",_name); + *f=_tilt_pitch*180/pi; } else if (j==5) { - sprintf(text,"/rotors/%s/debug/debugfvs",_name); - *f=_f_vs; + sprintf(text,"/rotors/%s/tilt/roll-deg",_name); + *f=_tilt_roll*180/pi; } else if (j==6) { - sprintf(text,"/rotors/%s/debug/debugftl",_name); - *f=_f_tl; + sprintf(text,"/rotors/%s/tilt/yaw-deg",_name); + *f=_tilt_yaw*180/pi; } else if (j==7) { @@ -350,6 +374,16 @@ void Rotorgear::setEngineOn(int value) _engineon=value; } +void Rotorgear::setRotorEngineMaxRelTorque(float lval) +{ + _max_rel_torque=lval; +} + +void Rotorgear::setRotorRelTarget(float lval) +{ + _target_rel_rpm=lval; +} + void Rotor::setAlpha0(float f) { _alpha0=f; @@ -494,6 +528,51 @@ void Rotor::setMinCollective(float value) _min_pitch=value/180*pi; } +void Rotor::setMinTiltYaw(float value) +{ + _min_tilt_yaw=value/180*pi; +} + +void Rotor::setMinTiltPitch(float value) +{ + _min_tilt_pitch=value/180*pi; +} + +void Rotor::setMinTiltRoll(float value) +{ + _min_tilt_roll=value/180*pi; +} + +void Rotor::setMaxTiltYaw(float value) +{ + _max_tilt_yaw=value/180*pi; +} + +void Rotor::setMaxTiltPitch(float value) +{ + _max_tilt_pitch=value/180*pi; +} + +void Rotor::setMaxTiltRoll(float value) +{ + _max_tilt_roll=value/180*pi; +} + +void Rotor::setTiltCenterX(float value) +{ + _tilt_center[0] = value; +} + +void Rotor::setTiltCenterY(float value) +{ + _tilt_center[1] = value; +} + +void Rotor::setTiltCenterZ(float value) +{ + _tilt_center[2] = value; +} + void Rotor::setMaxCollective(float value) { _max_pitch=value/180*pi; @@ -574,6 +653,11 @@ void Rotor::setRelLenHinge(float value) _rel_len_hinge=value; } +void Rotor::setDownwashFactor(float value) +{ + _downwash_factor=value; +} + void Rotor::setAlphaoutput(int i, const char *text) { strncpy(_alphaoutput[i],text,255); @@ -615,7 +699,7 @@ void Rotor::setGlobalGround(double *global_ground, float* global_vel) for(i=0; i<4; i++) _global_ground[i] = global_ground[i]; } -void Rotor::setParameter(char *parametername, float value) +void Rotor::setParameter(const char *parametername, float value) { #define p(a,b) if (strcmp(parametername,#a)==0) _##a = (value * (b)); else p(translift_ve,1) @@ -663,6 +747,27 @@ void Rotorgear::setRotorBrake(float lval) _rotorbrake=lval; } +void Rotor::setTiltYaw(float lval) +{ + lval = Math::clamp(lval, -1, 1); + _tilt_yaw = _min_tilt_yaw+(lval+1)/2*(_max_tilt_yaw-_min_tilt_yaw); + _directions_and_postions_dirty = true; +} + +void Rotor::setTiltPitch(float lval) +{ + lval = Math::clamp(lval, -1, 1); + _tilt_pitch = _min_tilt_pitch+(lval+1)/2*(_max_tilt_pitch-_min_tilt_pitch); + _directions_and_postions_dirty = true; +} + +void Rotor::setTiltRoll(float lval) +{ + lval = Math::clamp(lval, -1, 1); + _tilt_roll = _min_tilt_roll+(lval+1)/2*(_max_tilt_roll-_min_tilt_roll); + _directions_and_postions_dirty = true; +} + void Rotor::setCollective(float lval) { lval = Math::clamp(lval, -1, 1); @@ -686,6 +791,12 @@ void Rotor::setCyclicail(float lval,float rval) _cyclicail=-(_mincyclicail+(lval+1)/2*(_maxcyclicail-_mincyclicail)); } +void Rotor::setRotorBalance(float lval) +{ + lval = Math::clamp(lval, -1, 1); + _balance2 = lval; +} + void Rotor::getPosition(float* out) { int i; @@ -707,7 +818,7 @@ void Rotor::calcLiftFactor(float* v, float rho, State *s) _f_ge=1+_diameter/_ground_effect_altitude*_ground_effect_constant; // Now calculate translational lift - float v_vert = Math::dot3(v,_normal); + // float v_vert = Math::dot3(v,_normal); float help[3]; Math::cross3(v,_normal,help); float v_horiz = Math::mag3(help); @@ -718,6 +829,7 @@ void Rotor::calcLiftFactor(float* v, float rho, State *s) //store the gravity direction Glue::geodUp(s->pos, _grav_direction); + s->velGlobalToLocal(_grav_direction, _grav_direction); } void Rotor::findGroundEffectAltitude(Ground * ground_cb,State *s) @@ -920,27 +1032,45 @@ void Rotor::getDownWash(float *pos, float *v_heli, float *downwash) //at dist = rotor radius it is assumed to be 1/e * v1 + (1-1/e)* v2 float v = g * v1 + (1-g) * v2; - Math::mul3(-v,_normal_with_yaw_roll,downwash); + Math::mul3(-v*_downwash_factor,_normal_with_yaw_roll,downwash); //the downwash is calculated in the opposite direction of the normal } -void Rotor::compile() +void Rotor::euler2orient(float roll, float pitch, float hdg, float* out) { - // Have we already been compiled? - if(_rotorparts.size() != 0) return; - - //rotor is divided into _number_of_parts parts - //each part is calcualted at _number_of_segments points + // the Glue::euler2orient, inverts y>2)<<2; - _dynamic=_dynamic*(1/ //inverse of the time - ( (60/_rotor_rpm)/4 //for rotating 90 deg - +(60/_rotor_rpm)/(2*_number_of_blades) //+ meantime a rotorblade - //will pass a given point - )); +void Rotor::updateDirectionsAndPositions(float *rot) +{ + if (!_directions_and_postions_dirty) + { + rot[0]=rot[1]=rot[2]=0; + return; + } + rot[0]=_old_tilt_roll-_tilt_roll; + rot[1]=_old_tilt_pitch-_tilt_pitch; + rot[2]=_old_tilt_yaw-_tilt_yaw; + _old_tilt_roll=_tilt_roll; + _old_tilt_pitch=_tilt_pitch; + _old_tilt_yaw=_tilt_yaw; + float orient[9]; + euler2orient(_tilt_roll, _tilt_pitch, _tilt_yaw, orient); + float forward[3]; + float normal[3]; + float base[3]; + Math::sub3(_base,_tilt_center,base); + Math::vmul33(orient, base, base); + Math::add3(base,_tilt_center,base); + Math::vmul33(orient, _forward, forward); + Math::vmul33(orient, _normal, normal); +#define _base base +#define _forward forward +#define _normal normal float directions[5][3]; //pointing forward, right, ... the 5th is ony for calculation directions[0][0]=_forward[0]; @@ -953,18 +1083,17 @@ void Rotor::compile() Math::cross3(directions[i-1],_normal,directions[i]); else Math::cross3(_normal,directions[i-1],directions[i]); - Math::unit3(directions[i],directions[i]); } Math::set3(directions[4],directions[0]); // now directions[0] is perpendicular to the _normal.and has a length // of 1. if _forward is already normalized and perpendicular to the // normal, directions[0] will be the same - _num_ground_contact_pos=(_number_of_parts<16)?_number_of_parts:16; + //_num_ground_contact_pos=(_number_of_parts<16)?_number_of_parts:16; for (i=0;i<_num_ground_contact_pos;i++) { float help[3]; - float s = Math::sin(pi*2*_num_ground_contact_pos/i); - float c = Math::cos(pi*2*_num_ground_contact_pos/i); + float s = Math::sin(pi*2*i/_num_ground_contact_pos); + float c = Math::cos(pi*2*i/_num_ground_contact_pos); Math::mul3(c*_diameter*0.5,directions[0],_ground_contact_pos[i]); Math::mul3(s*_diameter*0.5,directions[1],help); Math::add3(help,_ground_contact_pos[i],_ground_contact_pos[i]); @@ -975,6 +1104,76 @@ void Rotor::compile() Math::mul3(_diameter*0.7,directions[i],_groundeffectpos[i]); Math::add3(_base,_groundeffectpos[i],_groundeffectpos[i]); } + for (i=0;i<_number_of_parts;i++) + { + Rotorpart* rp = getRotorpart(i); + float lpos[3],lforceattac[3],lspeed[3],dirzentforce[3]; + float s = Math::sin(2*pi*i/_number_of_parts); + float c = Math::cos(2*pi*i/_number_of_parts); + float sp = Math::sin(float(2*pi*i/_number_of_parts-pi/2.+_phi)); + float cp = Math::cos(float(2*pi*i/_number_of_parts-pi/2.+_phi)); + float direction[3],nextdirection[3],help[3],direction90deg[3]; + float rotorpartmass = _weight_per_blade*_number_of_blades/_number_of_parts*.453; + float speed=_rotor_rpm/60*_diameter*_rel_blade_center*pi; + float lentocenter=_diameter*_rel_blade_center*0.5; + float lentoforceattac=_diameter*_rel_len_hinge*0.5; + float zentforce=rotorpartmass*speed*speed/lentocenter; + + Math::mul3(c ,directions[0],help); + Math::mul3(s ,directions[1],direction); + Math::add3(help,direction,direction); + + Math::mul3(c ,directions[1],help); + Math::mul3(s ,directions[2],direction90deg); + Math::add3(help,direction90deg,direction90deg); + + Math::mul3(cp ,directions[1],help); + Math::mul3(sp ,directions[2],nextdirection); + Math::add3(help,nextdirection,nextdirection); + + Math::mul3(lentocenter,direction,lpos); + Math::add3(lpos,_base,lpos); + Math::mul3(lentoforceattac,nextdirection,lforceattac); + //nextdirection: +90deg (gyro)!!! + + Math::add3(lforceattac,_base,lforceattac); + Math::mul3(speed,direction90deg,lspeed); + Math::mul3(1,nextdirection,dirzentforce); + rp->setPosition(lpos); + rp->setNormal(_normal); + rp->setZentipetalForce(zentforce); + rp->setPositionForceAttac(lforceattac); + rp->setSpeed(lspeed); + rp->setDirectionofZentipetalforce(dirzentforce); + rp->setDirectionofRotorPart(direction); + } +#undef _base +#undef _forward +#undef _normal + _directions_and_postions_dirty=false; +} + +void Rotor::compile() +{ + // Have we already been compiled? + if(_rotorparts.size() != 0) return; + + //rotor is divided into _number_of_parts parts + //each part is calcualted at _number_of_segments points + + //clamp to 4..256 + //and make it a factor of 4 + _number_of_parts=(int(Math::clamp(_number_of_parts,4,256))>>2)<<2; + + _dynamic=_dynamic*(1/ //inverse of the time + ( (60/_rotor_rpm)/4 //for rotating 90 deg + +(60/_rotor_rpm)/(2*_number_of_blades) //+ meantime a rotorblade + //will pass a given point + )); + //normalize the directions + Math::unit3(_forward,_forward); + Math::unit3(_normal,_normal); + _num_ground_contact_pos=(_number_of_parts<16)?_number_of_parts:16; float rotorpartmass = _weight_per_blade*_number_of_blades/_number_of_parts*.453; //was pounds -> now kg @@ -982,7 +1181,7 @@ void Rotor::compile() * _diameter * _rel_blade_center * _rel_blade_center /(0.5*0.5); float speed=_rotor_rpm/60*_diameter*_rel_blade_center*pi; float lentocenter=_diameter*_rel_blade_center*0.5; - float lentoforceattac=_diameter*_rel_len_hinge*0.5; + // float lentoforceattac=_diameter*_rel_len_hinge*0.5; float zentforce=rotorpartmass*speed*speed/lentocenter; float pitchaforce=_force_at_pitch_a/_number_of_parts*.453*9.81; // was pounds of force, now N, devided by _number_of_parts @@ -997,8 +1196,8 @@ void Rotor::compile() float relamp=(omega*omega/(2*_delta*Math::sqrt(sqr(omega0*omega0-omega*omega) +4*_delta*_delta*omega*omega)))*_cyclic_factor; - float relamp_theoretical=(omega*omega/(2*delta_theoretical*Math::sqrt(sqr(omega0*omega0-omega*omega) - +4*delta_theoretical*delta_theoretical*omega*omega)))*_cyclic_factor; + //float relamp_theoretical=(omega*omega/(2*delta_theoretical*Math::sqrt(sqr(omega0*omega0-omega*omega) + // +4*delta_theoretical*delta_theoretical*omega*omega)))*_cyclic_factor; _phi=Math::acos(_rel_len_hinge); _phi-=Math::atan(_delta3); if (!_no_torque) @@ -1017,37 +1216,10 @@ void Rotor::compile() } Rotorpart* rps[256]; + int i; for (i=0;i<_number_of_parts;i++) { - float lpos[3],lforceattac[3],lspeed[3],dirzentforce[3]; - float s = Math::sin(2*pi*i/_number_of_parts); - float c = Math::cos(2*pi*i/_number_of_parts); - float sp = Math::sin(float(2*pi*i/_number_of_parts-pi/2.+_phi)); - float cp = Math::cos(float(2*pi*i/_number_of_parts-pi/2.+_phi)); - float direction[3],nextdirection[3],help[3],direction90deg[3]; - Math::mul3(c ,directions[0],help); - Math::mul3(s ,directions[1],direction); - Math::add3(help,direction,direction); - - Math::mul3(c ,directions[1],help); - Math::mul3(s ,directions[2],direction90deg); - Math::add3(help,direction90deg,direction90deg); - - Math::mul3(cp ,directions[1],help); - Math::mul3(sp ,directions[2],nextdirection); - Math::add3(help,nextdirection,nextdirection); - - Math::mul3(lentocenter,direction,lpos); - Math::add3(lpos,_base,lpos); - Math::mul3(lentoforceattac,nextdirection,lforceattac); - //nextdirection: +90deg (gyro)!!! - - Math::add3(lforceattac,_base,lforceattac); - Math::mul3(speed,direction90deg,lspeed); - Math::mul3(1,nextdirection,dirzentforce); - - Rotorpart* rp=rps[i]=newRotorpart(lpos, lforceattac, _normal, - lspeed,dirzentforce,zentforce,pitchaforce,_delta3,rotorpartmass, + Rotorpart* rp=rps[i]=newRotorpart(zentforce,pitchaforce,_delta3,rotorpartmass, _translift,_rel_len_hinge,lentocenter); int k = i*4/_number_of_parts; rp->setAlphaoutput(_alphaoutput[k&1?k:(_ccw?k^2:k)],0); @@ -1055,7 +1227,6 @@ void Rotor::compile() _rotorparts.add(rp); rp->setTorque(torquemax,torque0); rp->setRelamp(relamp); - rp->setDirectionofRotorPart(direction); rp->setTorqueOfInertia(_torque_of_inertia/_number_of_parts); rp->setDirection(2*pi*i/_number_of_parts); } @@ -1067,6 +1238,8 @@ void Rotor::compile() rps[(i-_number_of_parts/4+_number_of_parts)%_number_of_parts], rps[(i+_number_of_parts/4)%_number_of_parts]); } + float drot[3]; + updateDirectionsAndPositions(drot); for (i=0;i<_number_of_parts;i++) { rps[i]->setCompiled(); @@ -1160,6 +1333,10 @@ void Rotor::compile() rps[i]->setRelamp(relamp); } rps[0]->setOmega(0); + setCollective(0); + setCyclicail(0,0); + setCyclicele(0,0); + writeInfo(); //tie the properties @@ -1277,17 +1454,10 @@ void Rotor:: writeInfo() } #endif } -Rotorpart* Rotor::newRotorpart(float* pos, float *posforceattac, float *normal, - float* speed,float *dirzentforce, float zentforce,float maxpitchforce, +Rotorpart* Rotor::newRotorpart(float zentforce,float maxpitchforce, float delta3,float mass,float translift,float rellenhinge,float len) { Rotorpart *r = new Rotorpart(); - r->setPosition(pos); - r->setNormal(normal); - r->setZentipetalForce(zentforce); - r->setPositionForceAttac(posforceattac); - r->setSpeed(speed); - r->setDirectionofZentipetalforce(dirzentforce); r->setDelta3(delta3); r->setDynamic(_dynamic); r->setTranslift(_translift); @@ -1358,13 +1528,14 @@ void Rotorgear::calcForces(float* torqueOut) total_torque+=r->getTorque()*omegan; } float max_torque_of_engine=0; + // SGPropertyNode * node=fgGetNode("/rotors/gear", true); if (_engineon) { - max_torque_of_engine=_max_power_engine; - float df=1-omegarel; + max_torque_of_engine=_max_power_engine*_max_rel_torque; + float df=_target_rel_rpm-omegarel; df/=_engine_prop_factor; df = Math::clamp(df, 0, 1); - max_torque_of_engine = df * _max_power_engine; + max_torque_of_engine = df * _max_power_engine*_max_rel_torque; } total_torque*=-1; _ddt_omegarel=0; @@ -1391,7 +1562,7 @@ void Rotorgear::calcForces(float* torqueOut) //change the rotation of the rotors if ((max_torque_of_enginetotal_torque)&&(omegarel<1)) + ||((max_torque_of_engine>total_torque)&&(omegarel<_target_rel_rpm)) //increasing rotation due to engine ||(total_torque<0) ) //increasing rotation due to autorotation { @@ -1428,7 +1599,7 @@ void Rotorgear::calcForces(float* torqueOut) for(j=0; j<_rotors.size(); j++) { Rotor* r = (Rotor*)_rotors.get(j); for(i=0; i_rotorparts.size(); i++) { - float torque_scalar=0; + // float torque_scalar=0; Rotorpart* rp = (Rotorpart*)r->_rotorparts.get(i); float torque[3]; rp->getAccelTorque(_ddt_omegarel,torque); @@ -1448,7 +1619,7 @@ void Rotorgear::addRotor(Rotor* rotor) void Rotorgear::compile() { - float wgt = 0; + // float wgt = 0; for(int j=0; j<_rotors.size(); j++) { Rotor* r = (Rotor*)_rotors.get(j); r->compile(); @@ -1504,6 +1675,8 @@ Rotorgear::Rotorgear() _ddt_omegarel=0; _engine_accel_limit=0.05f; _total_torque_on_engine=0; + _target_rel_rpm=1; + _max_rel_torque=1; } Rotorgear::~Rotorgear()