#include "views.hxx"
+// Define following to extract various vectors directly
+// from matrices we have allready computed
+// rather then performing 'textbook algebra' to rederive them
+// Norman Vine -- nhv@yahoo.com
+// #define FG_VIEW_INLINE_OPTIMIZATIONS
+
// temporary (hopefully) hack
static int panel_hist = 0;
// Constructor
FGView::FGView( void ) {
+ MAT3identity(WORLD);
}
slope_x = -cos_fov_x / sin_fov_x;
// printf("slope_x = %.2f\n", slope_x);
+ // fov_x_clip and fov_y_clip convoluted algebraic simplification
+ // see code executed in tilemgr.cxx when USE_FAST_FOV_CLIP not
+ // defined Norman Vine -- nhv@yahoo.com
#if defined( USE_FAST_FOV_CLIP )
fov_x_clip = slope_x*cos_fov_x - sin_fov_x;
#endif // defined( USE_FAST_FOV_CLIP )
xglLoadIdentity();
// set up our view volume (default)
+#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
LookAt(view_pos.x(), view_pos.y(), view_pos.z(),
view_pos.x() + view_forward[0],
- view_pos.y() + view_forward[1],
- view_pos.z() + view_forward[2],
- view_up[0], view_up[1], view_up[2]);
+ view_pos.y() + view_forward[1],
+ view_pos.z() + view_forward[2],
+ view_up[0], view_up[1], view_up[2]);
// look almost straight up (testing and eclipse watching)
/* LookAt(view_pos.x(), view_pos.y(), view_pos.z(),
- view_pos.x() + view_up[0] + .001,
- view_pos.y() + view_up[1] + .001,
- view_pos.z() + view_up[2] + .001,
- view_up[0], view_up[1], view_up[2]); */
+ view_pos.x() + view_up[0] + .001,
+ view_pos.y() + view_up[1] + .001,
+ view_pos.z() + view_up[2] + .001,
+ view_up[0], view_up[1], view_up[2]); */
// lock view horizontally towards sun (testing)
/* LookAt(view_pos.x(), view_pos.y(), view_pos.z(),
- view_pos.x() + surface_to_sun[0],
- view_pos.y() + surface_to_sun[1],
- view_pos.z() + surface_to_sun[2],
- view_up[0], view_up[1], view_up[2]); */
+ view_pos.x() + surface_to_sun[0],
+ view_pos.y() + surface_to_sun[1],
+ view_pos.z() + surface_to_sun[2],
+ view_up[0], view_up[1], view_up[2]); */
// lock view horizontally towards south (testing)
/* LookAt(view_pos.x(), view_pos.y(), view_pos.z(),
- view_pos.x() + surface_south[0],
- view_pos.y() + surface_south[1],
- view_pos.z() + surface_south[2],
- view_up[0], view_up[1], view_up[2]); */
+ view_pos.x() + surface_south[0],
+ view_pos.y() + surface_south[1],
+ view_pos.z() + surface_south[2],
+ view_up[0], view_up[1], view_up[2]); */
+
+#else // defined(FG_VIEW_INLINE_OPTIMIZATIONS)
+ //void FGView::LookAt( GLdouble eyex, GLdouble eyey, GLdouble eyez,
+ // GLdouble centerx, GLdouble centery, GLdouble centerz,
+ // GLdouble upx, GLdouble upy, GLdouble upz )
+ {
+ GLdouble *m;
+ GLdouble x[3], y[3], z[3];
+ // GLdouble mag;
+
+ m = current_view.MODEL_VIEW;
+
+ /* Make rotation matrix */
+
+ /* Z vector */
+ z[0] = -view_forward[0]; //eyex - centerx;
+ z[1] = -view_forward[1]; //eyey - centery;
+ z[2] = -view_forward[2]; //eyez - centerz;
+
+ // In our case this is a unit vector NHV
+
+ // mag = sqrt( z[0]*z[0] + z[1]*z[1] + z[2]*z[2] );
+ // if (mag) { /* mpichler, 19950515 */
+ // mag = 1.0/mag;
+ // printf("mag(%f) ", mag);
+ // z[0] *= mag;
+ // z[1] *= mag;
+ // z[2] *= mag;
+ // }
+
+ /* Y vector */
+ y[0] = view_up[0]; //upx;
+ y[1] = view_up[1]; //upy;
+ y[2] = view_up[2]; //upz;
+
+ /* X vector = Y cross Z */
+ x[0] = y[1]*z[2] - y[2]*z[1];
+ x[1] = -y[0]*z[2] + y[2]*z[0];
+ x[2] = y[0]*z[1] - y[1]*z[0];
+
+ // printf(" %f %f %f ", y[0], y[1], y[2]);
+
+ /* Recompute Y = Z cross X */
+ // y[0] = z[1]*x[2] - z[2]*x[1];
+ // y[1] = -z[0]*x[2] + z[2]*x[0];
+ // y[2] = z[0]*x[1] - z[1]*x[0];
+
+ // printf(" %f %f %f\n", y[0], y[1], y[2]);
+
+ // In our case these are unit vectors NHV
+
+ /* mpichler, 19950515 */
+ /* cross product gives area of parallelogram, which is < 1.0 for
+ * non-perpendicular unit-length vectors; so normalize x, y here
+ */
+
+ // mag = sqrt( x[0]*x[0] + x[1]*x[1] + x[2]*x[2] );
+ // if (mag) {
+ // mag = 1.0/mag;
+ // printf("mag2(%f) ", mag);
+ // x[0] *= mag;
+ // x[1] *= mag;
+ // x[2] *= mag;
+ // }
+
+ // mag = sqrt( y[0]*y[0] + y[1]*y[1] + y[2]*y[2] );
+ // if (mag) {
+ // mag = 1.0/mag;
+ // printf("mag3(%f)\n", mag);
+ // y[0] *= mag;
+ // y[1] *= mag;
+ // y[2] *= mag;
+ // }
+
+#define M(row,col) m[col*4+row]
+ M(0,0) = x[0]; M(0,1) = x[1]; M(0,2) = x[2]; M(0,3) = 0.0;
+ M(1,0) = y[0]; M(1,1) = y[1]; M(1,2) = y[2]; M(1,3) = 0.0;
+ M(2,0) = z[0]; M(2,1) = z[1]; M(2,2) = z[2]; M(2,3) = 0.0;
+ // the following is part of the original gluLookAt(), but we are
+ // commenting it out because we know we are going to be doing a
+ // translation below which will set these values anyways
+ // M(3,0) = 0.0; M(3,1) = 0.0; M(3,2) = 0.0; M(3,3) = 1.0;
+#undef M
+
+ // Translate Eye to Origin
+ // replaces: glTranslated( -eyex, -eyey, -eyez );
+
+ // this has been slightly modified from the original glTranslate()
+ // code because we know that coming into this m[12] = m[13] =
+ // m[14] = 0.0, and m[15] = 1.0;
+ m[12] = m[0] * -view_pos.x() + m[4] * -view_pos.y() + m[8] * -view_pos.z() /* + m[12] */;
+ m[13] = m[1] * -view_pos.x() + m[5] * -view_pos.y() + m[9] * -view_pos.z() /* + m[13] */;
+ m[14] = m[2] * -view_pos.x() + m[6] * -view_pos.y() + m[10] * -view_pos.z() /* + m[14] */;
+ m[15] = 1.0 /* m[3] * -view_pos.x() + m[7] * -view_pos.y() + m[11] * -view_pos.z() + m[15] */;
+
+ // xglMultMatrixd( m );
+ xglLoadMatrixd( m );
+ }
+#endif // FG_VIEW_INLINE_OPTIMIZATIONS
+
panel_hist = current_options.get_panel_status();
}
+void getRotMatrix(double* out, MAT3vec vec, double radians)
+{
+ /* This function contributed by Erich Boleyn (erich@uruk.org) */
+ /* This function used from the Mesa OpenGL code (matrix.c) */
+ double s, c; // mag,
+ double vx, vy, vz, xy, yz, zx, xs, ys, zs, one_c; //, xx, yy, zz
+
+ MAT3identity(out);
+ s = sin(radians);
+ c = cos(radians);
+
+ // mag = getMagnitude();
+
+ vx = vec[0];
+ vy = vec[1];
+ vz = vec[2];
+
+#define M(row,col) out[row*4 + col]
+
+ /*
+ * Arbitrary axis rotation matrix.
+ *
+ * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
+ * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
+ * (which is about the X-axis), and the two composite transforms
+ * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
+ * from the arbitrary axis to the X-axis then back. They are
+ * all elementary rotations.
+ *
+ * Rz' is a rotation about the Z-axis, to bring the axis vector
+ * into the x-z plane. Then Ry' is applied, rotating about the
+ * Y-axis to bring the axis vector parallel with the X-axis. The
+ * rotation about the X-axis is then performed. Ry and Rz are
+ * simply the respective inverse transforms to bring the arbitrary
+ * axis back to it's original orientation. The first transforms
+ * Rz' and Ry' are considered inverses, since the data from the
+ * arbitrary axis gives you info on how to get to it, not how
+ * to get away from it, and an inverse must be applied.
+ *
+ * The basic calculation used is to recognize that the arbitrary
+ * axis vector (x, y, z), since it is of unit length, actually
+ * represents the sines and cosines of the angles to rotate the
+ * X-axis to the same orientation, with theta being the angle about
+ * Z and phi the angle about Y (in the order described above)
+ * as follows:
+ *
+ * cos ( theta ) = x / sqrt ( 1 - z^2 )
+ * sin ( theta ) = y / sqrt ( 1 - z^2 )
+ *
+ * cos ( phi ) = sqrt ( 1 - z^2 )
+ * sin ( phi ) = z
+ *
+ * Note that cos ( phi ) can further be inserted to the above
+ * formulas:
+ *
+ * cos ( theta ) = x / cos ( phi )
+ * sin ( theta ) = y / cos ( phi )
+ *
+ * ...etc. Because of those relations and the standard trigonometric
+ * relations, it is pssible to reduce the transforms down to what
+ * is used below. It may be that any primary axis chosen will give the
+ * same results (modulo a sign convention) using thie method.
+ *
+ * Particularly nice is to notice that all divisions that might
+ * have caused trouble when parallel to certain planes or
+ * axis go away with care paid to reducing the expressions.
+ * After checking, it does perform correctly under all cases, since
+ * in all the cases of division where the denominator would have
+ * been zero, the numerator would have been zero as well, giving
+ * the expected result.
+ */
+
+ one_c = 1.0F - c;
+
+ // xx = vx * vx;
+ // yy = vy * vy;
+ // zz = vz * vz;
+
+ // xy = vx * vy;
+ // yz = vy * vz;
+ // zx = vz * vx;
+
+
+ M(0,0) = (one_c * vx * vx) + c;
+ xs = vx * s;
+ yz = vy * vz * one_c;
+ M(1,2) = yz + xs;
+ M(2,1) = yz - xs;
+
+ M(1,1) = (one_c * vy * vy) + c;
+ ys = vy * s;
+ zx = vz * vx * one_c;
+ M(0,2) = zx - ys;
+ M(2,0) = zx + ys;
+
+ M(2,2) = (one_c * vz *vz) + c;
+ zs = vz * s;
+ xy = vx * vy * one_c;
+ M(0,1) = xy + zs;
+ M(1,0) = xy - zs;
+
+ // M(0,0) = (one_c * xx) + c;
+ // M(1,0) = (one_c * xy) - zs;
+ // M(2,0) = (one_c * zx) + ys;
+
+ // M(0,1) = (one_c * xy) + zs;
+ // M(1,1) = (one_c * yy) + c;
+ // M(2,1) = (one_c * yz) - xs;
+
+ // M(0,2) = (one_c * zx) - ys;
+ // M(1,2) = (one_c * yz) + xs;
+ // M(2,2) = (one_c * zz) + c;
+
+#undef M
+}
+
+
// Update the view parameters
void FGView::UpdateViewMath( FGInterface *f ) {
Point3D p;
scenery.center = scenery.next_center;
+#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
// printf("scenery center = %.2f %.2f %.2f\n", scenery.center.x,
// scenery.center.y, scenery.center.z);
}
abs_view_pos = fgPolarToCart3d(p);
+
+#else // FG_VIEW_INLINE_OPTIMIZATIONS
+
+ double tmp_radius = f->get_Sea_level_radius() * FEET_TO_METER;
+ double tmp = f->get_cos_lat_geocentric() * tmp_radius;
+
+ cur_zero_elev.setx(f->get_cos_longitude()*tmp - scenery.center.x());
+ cur_zero_elev.sety(f->get_sin_longitude()*tmp - scenery.center.y());
+ cur_zero_elev.setz(f->get_sin_lat_geocentric()*tmp_radius - scenery.center.z());
+
+ // calculate view position in current FG view coordinate system
+ // p.lon & p.lat are already defined earlier, p.radius was set to
+ // the sea level radius, so now we add in our altitude.
+ if ( f->get_Altitude() * FEET_TO_METER >
+ (scenery.cur_elev + 0.5 * METER_TO_FEET) ) {
+ tmp_radius += f->get_Altitude() * FEET_TO_METER;
+ } else {
+ tmp_radius += scenery.cur_elev + 0.5 * METER_TO_FEET ;
+ }
+ tmp = f->get_cos_lat_geocentric() * tmp_radius;
+ abs_view_pos.setx(f->get_cos_longitude()*tmp);
+ abs_view_pos.sety(f->get_sin_longitude()*tmp);
+ abs_view_pos.setz(f->get_sin_lat_geocentric()*tmp_radius);
+
+#endif // FG_VIEW_INLINE_OPTIMIZATIONS
+
view_pos = abs_view_pos - scenery.center;
FG_LOG( FG_VIEW, FG_DEBUG, "Polar view pos = " << p );
} // if ( use_larcsim_local_to_body )
+#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
+
// Derive the local UP transformation matrix based on *geodetic*
// coordinates
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
// surface_east[0], surface_east[1], surface_east[2]);
// printf( "Should be close to zero = %.2f\n",
// MAT3_DOT_PRODUCT(surface_south, surface_east));
+
+#else // FG_VIEW_INLINE_OPTIMIZATIONS
+
+ // // Build spherical to cartesian transform matrix directly
+ double cos_lat = f->get_cos_latitude(); // cos(-f->get_Latitude());
+ double sin_lat = -f->get_sin_latitude(); // sin(-f->get_Latitude());
+ double cos_lon = f->get_cos_longitude(); //cos(f->get_Longitude());
+ double sin_lon = f->get_sin_longitude(); //sin(f->get_Longitude());
+
+ double *mat = (double *)UP;
+
+ mat[0] = cos_lat*cos_lon;
+ mat[1] = cos_lat*sin_lon;
+ mat[2] = -sin_lat;
+ mat[3] = 0.0;
+ mat[4] = -sin_lon;
+ mat[5] = cos_lon;
+ mat[6] = 0.0;
+ mat[7] = 0.0;
+ mat[8] = sin_lat*cos_lon;
+ mat[9] = sin_lat*sin_lon;
+ mat[10] = cos_lat;
+ mat[11] = mat[12] = mat[13] = mat[14] = 0.0;
+ mat[15] = 1.0;
+
+ MAT3mult(VIEW, LOCAL, UP);
+
+ // THESE COULD JUST BE POINTERS !!!
+ MAT3_SET_VEC(local_up, mat[0], mat[1], mat[2]);
+ MAT3_SET_VEC(view_up, VIEW[0][0], VIEW[0][1], VIEW[0][2]);
+ MAT3_SET_VEC(forward, VIEW[2][0], VIEW[2][1], VIEW[2][2]);
+
+ getRotMatrix((double *)TMP, view_up, view_offset);
+ MAT3mult_vec(view_forward, forward, TMP);
+
+ // make a vector to the current view position
+ MAT3_SET_VEC(v0, view_pos.x(), view_pos.y(), view_pos.z());
+
+ // Given a vector pointing straight down (-Z), map into onto the
+ // local plane representing "horizontal". This should give us the
+ // local direction for moving "south".
+ MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0);
+ map_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south);
+
+ MAT3_NORMALIZE_VEC(surface_south, ntmp);
+ // printf( "Surface direction directly south %.6f %.6f %.6f\n",
+ // surface_south[0], surface_south[1], surface_south[2]);
+
+ // now calculate the surface east vector
+ getRotMatrix((double *)TMP, view_up, FG_PI_2);
+ MAT3mult_vec(surface_east, surface_south, TMP);
+ // printf( "Surface direction directly east %.6f %.6f %.6f\n",
+ // surface_east[0], surface_east[1], surface_east[2]);
+ // printf( "Should be close to zero = %.6f\n",
+ // MAT3_DOT_PRODUCT(surface_south, surface_east));
+#endif // !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
}
} // if ( use_larcsim_local_to_body )
+#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
+
// printf("AIRCRAFT matrix\n");
// MAT3print(AIRCRAFT, stdout);
// MAT3mult_vec(vec, vec1, WORLD_TO_EYE);
// printf( "\nabs_view_pos -> eye = %.2f %.2f %.2f\n",
// vec[0], vec[1], vec[2]);
+#else // FG_VIEW_INLINE_OPTIMIZATIONS
+
+ MAT3_SET_HVEC(vec, -AIRCRAFT[1][0], -AIRCRAFT[1][1], -AIRCRAFT[1][2], -AIRCRAFT[1][3]);
+ getRotMatrix((double *)TMP, vec, -view_offset );
+ MAT3mult(VIEW_OFFSET, AIRCRAFT, TMP);
+ // MAT3print_formatted(VIEW_OFFSET, stdout, "VIEW_OFFSET matrix:\n",
+ // NULL, "%#8.6f ", "\n");
+
+ // Build spherical to cartesian transform matrix directly
+ double *mat = (double *)WORLD; //T_view; //WORLD;
+ double cos_lat = f->get_cos_latitude(); //cos(f->get_Latitude());
+ double sin_lat = f->get_sin_latitude(); //sin(f->get_Latitude());
+ // using trig identities this:
+ // mat[0] = cos(f->get_Longitude() - FG_PI_2);//cos_lon;
+ // mat[1] = sin(f->get_Longitude() - FG_PI_2);//sin_lon;
+ // becomes this: :-)
+ mat[0] = f->get_sin_longitude(); //cos_lon;
+ mat[1] = -f->get_cos_longitude(); //sin_lon;
+ mat[4] = -cos_lat*mat[1]; //mat[1]=sin_lon;
+ mat[5] = cos_lat*mat[0]; //mat[0]=cos_lon;
+ mat[6] = sin_lat;
+ mat[8] = sin_lat*mat[1]; //mat[1]=sin_lon;
+ mat[9] = -sin_lat*mat[0]; //mat[0]=cos_lon;
+ mat[10] = cos_lat;
+
+ // BUILD EYE_TO_WORLD = AIRCRAFT * WORLD
+ // and WORLD_TO_EYE = Inverse( EYE_TO_WORLD) concurrently
+ // by Transposing the 3x3 rotation sub-matrix
+ WORLD_TO_EYE[0][0] = EYE_TO_WORLD[0][0] =
+ VIEW_OFFSET[0][0]*mat[0] + VIEW_OFFSET[0][1]*mat[4] + VIEW_OFFSET[0][2]*mat[8];
+
+ WORLD_TO_EYE[1][0] = EYE_TO_WORLD[0][1] =
+ VIEW_OFFSET[0][0]*mat[1] + VIEW_OFFSET[0][1]*mat[5] + VIEW_OFFSET[0][2]*mat[9];
+
+ WORLD_TO_EYE[2][0] = EYE_TO_WORLD[0][2] =
+ VIEW_OFFSET[0][1]*mat[6] + VIEW_OFFSET[0][2]*mat[10];
+
+ WORLD_TO_EYE[0][1] = EYE_TO_WORLD[1][0] =
+ VIEW_OFFSET[1][0]*mat[0] + VIEW_OFFSET[1][1]*mat[4] + VIEW_OFFSET[1][2]*mat[8];
+
+ WORLD_TO_EYE[1][1] = EYE_TO_WORLD[1][1] =
+ VIEW_OFFSET[1][0]*mat[1] + VIEW_OFFSET[1][1]*mat[5] + VIEW_OFFSET[1][2]*mat[9];
+
+ WORLD_TO_EYE[2][1] = EYE_TO_WORLD[1][2] =
+ VIEW_OFFSET[1][1]*mat[6] + VIEW_OFFSET[1][2]*mat[10];
+
+ WORLD_TO_EYE[0][2] = EYE_TO_WORLD[2][0] =
+ VIEW_OFFSET[2][0]*mat[0] + VIEW_OFFSET[2][1]*mat[4] + VIEW_OFFSET[2][2]*mat[8];
+
+ WORLD_TO_EYE[1][2] = EYE_TO_WORLD[2][1] =
+ VIEW_OFFSET[2][0]*mat[1] + VIEW_OFFSET[2][1]*mat[5] + VIEW_OFFSET[2][2]*mat[9];
+
+ WORLD_TO_EYE[2][2] = EYE_TO_WORLD[2][2] =
+ VIEW_OFFSET[2][1]*mat[6] + VIEW_OFFSET[2][2]*mat[10];
+
+ // TRANSLATE TO VIEW POSITION
+ EYE_TO_WORLD[3][0] = view_pos.x();
+ EYE_TO_WORLD[3][1] = view_pos.y();
+ EYE_TO_WORLD[3][2] = view_pos.z();
+
+ // FILL 0 ENTRIES
+ WORLD_TO_EYE[0][3] = WORLD_TO_EYE[1][3] = WORLD_TO_EYE[2][3] =
+ EYE_TO_WORLD[0][3] = EYE_TO_WORLD[1][3] = EYE_TO_WORLD[2][3] = 0.0;
+
+ // FILL UNITY ENTRIES
+ WORLD_TO_EYE[3][3] = EYE_TO_WORLD[3][3] = 1.0;
+
+ /* MAKE THE INVERTED TRANSLATIONS */
+ mat = (double *)EYE_TO_WORLD;
+ WORLD_TO_EYE[3][0] = -mat[12]*mat[0]
+ -mat[13]*mat[1]
+ -mat[14]*mat[2];
+
+ WORLD_TO_EYE[3][1] = -mat[12]*mat[4]
+ -mat[13]*mat[5]
+ -mat[14]*mat[6];
+
+ WORLD_TO_EYE[3][2] = -mat[12]*mat[8]
+ -mat[13]*mat[9]
+ -mat[14]*mat[10];
+
+ // MAT3print_formatted(EYE_TO_WORLD, stdout, "EYE_TO_WORLD matrix:\n",
+ // NULL, "%#8.6f ", "\n");
+
+ // MAT3print_formatted(WORLD_TO_EYE, stdout, "WORLD_TO_EYE matrix:\n",
+ // NULL, "%#8.6f ", "\n");
+
+#endif // defined(FG_VIEW_INLINE_OPTIMIZATIONS)
}
// $Log$
+// Revision 1.35 1999/04/03 04:21:04 curt
+// Integration of Steve's plib conglomeration.
+// Optimizations (tm) by Norman Vine.
+//
// Revision 1.34 1999/03/08 21:56:41 curt
// Added panel changes sent in by Friedemann.
// Added a splash screen randomization since we have several nice splash screens.