]> git.mxchange.org Git - flightgear.git/commitdiff
Send geod from Nasal, properly document the code, take some parameters from properties
authoradrian <adrian@localhost.com>
Tue, 6 Dec 2011 21:00:50 +0000 (23:00 +0200)
committeradrian <adrian@localhost.com>
Tue, 6 Dec 2011 21:00:50 +0000 (23:00 +0200)
src/Radio/radio.cxx
src/Radio/radio.hxx
src/Scripting/NasalSys.cxx

index 3412a151b3fd48f1f5f6b7839073580200d13d0a..2c983285fd8754f1500025a46e4d521deb0d8736 100644 (file)
@@ -37,7 +37,7 @@
 FGRadioTransmission::FGRadioTransmission() {
        
        
-       _receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD
+       _receiver_sensitivity = -105.0; // typical AM receiver sensitivity seems to be 0.8 microVolt at 12dB SINAD or less
        
        /** AM transmitter power in dBm.
        *       Typical output powers for ATC ground equipment, VHF-UHF:
@@ -91,17 +91,15 @@ double FGRadioTransmission::getFrequency(int radio) {
        return freq;
 }
 
-/*** TODO: receive multiplayer chat message and voice
-***/
+
 void FGRadioTransmission::receiveChat(SGGeod tx_pos, double freq, string text, int ground_to_air) {
 
 }
 
-/*** TODO: receive navaid 
-***/
+
 double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmission_type) {
        
-       // typical VOR/LOC transmitter power appears to be 200 Watt ~ 53 dBm
+       // typical VOR/LOC transmitter power appears to be 100 - 200 Watt i.e 50 - 53 dBm
        // vor/loc typical sensitivity between -107 and -101 dBm
        // glideslope sensitivity between -85 and -81 dBm
        if ( _propagation_model == 1) {
@@ -115,40 +113,42 @@ double FGRadioTransmission::receiveNav(SGGeod tx_pos, double freq, int transmiss
 
 }
 
-double FGRadioTransmission::receiveBeacon(double lat, double lon, double elev, double heading, double pitch) {
+
+double FGRadioTransmission::receiveBeacon(SGGeod &tx_pos, double heading, double pitch) {
+       
+       // these properties should be set by an instrument
+       _receiver_sensitivity = _root_node->getDoubleValue("station[0]/rx-sensitivity", _receiver_sensitivity);
+       _transmitter_power = watt_to_dbm(_root_node->getDoubleValue("station[0]/tx-power-watt", _transmitter_power));
+       _polarization = _root_node->getIntValue("station[0]/polarization", 1);
+       _tx_antenna_height += _root_node->getDoubleValue("station[0]/tx-antenna-height", 0);
+       _rx_antenna_height += _root_node->getDoubleValue("station[0]/rx-antenna-height", 0);
+       _tx_antenna_gain += _root_node->getDoubleValue("station[0]/tx-antenna-gain", 0);
+       _rx_antenna_gain += _root_node->getDoubleValue("station[0]/rx-antenna-gain", 0);
        
+       double freq = _root_node->getDoubleValue("station[0]/frequency", 144.8);        // by default stay in the ham 2 meter band
        
-       _transmitter_power = 36;
-       _tx_antenna_height += 0.0;
-       _tx_antenna_gain += 0.5; 
-       elev = elev * SG_FEET_TO_METER;
-       double freq = _root_node->getDoubleValue("station[0]/frequency", 118.0);
-       int ground_to_air = 1;
-       string text = "Beacon1";
        double comm1 = getFrequency(1);
        double comm2 = getFrequency(2);
        if ( !(fabs(freq - comm1) <= 0.0001) &&  !(fabs(freq - comm2) <= 0.0001) ) {
                return -1;
        }
-       SGGeod tx_pos = SGGeod::fromDegM( lon, lat, elev );
-       double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
+       
+       double signal = ITM_calculate_attenuation(tx_pos, freq, 1);
        
        return signal;
 }
 
 
-/*** Receive ATC radio communication as text
-***/
+
 void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, int ground_to_air) {
 
-       
+       // adjust some default parameters in case the ATC code does not set them
        if(ground_to_air == 1) {
                _transmitter_power += 4.0;
                _tx_antenna_height += 30.0;
                _tx_antenna_gain += 2.0; 
        }
        
-       
        double comm1 = getFrequency(1);
        double comm2 = getFrequency(2);
        if ( !(fabs(freq - comm1) <= 0.0001) &&  !(fabs(freq - comm2) <= 0.0001) ) {
@@ -156,30 +156,27 @@ void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, in
        }
        else {
        
-               if ( _propagation_model == 0) {
-                       // skip propagation routines entirely
+               if ( _propagation_model == 0) {         // skip propagation routines entirely
                        fgSetString("/sim/messages/atc", text.c_str());
                }
-               else if ( _propagation_model == 1 ) {
-                       // Use free-space, round earth
+               else if ( _propagation_model == 1 ) {           // Use free-space, round earth
+                       
                        double signal = LOS_calculate_attenuation(tx_pos, freq, ground_to_air);
                        if (signal <= 0.0) {
                                return;
                        }
                        else {
-                               
                                fgSetString("/sim/messages/atc", text.c_str());
-                               
                        }
                }
-               else if ( _propagation_model == 2 ) {
-                       // Use ITM propagation model
+               else if ( _propagation_model == 2 ) {   // Use ITM propagation model
+                       
                        double signal = ITM_calculate_attenuation(tx_pos, freq, ground_to_air);
                        if (signal <= 0.0) {
                                return;
                        }
                        if ((signal > 0.0) && (signal < 12.0)) {
-                               /** for low SNR values implement a way to make the conversation
+                               /** for low SNR values need a way to make the conversation
                                *       hard to understand but audible
                                *       in the real world, the receiver AGC fails to capture the slope
                                *       and the signal, due to being amplitude modulated, decreases volume after demodulation
@@ -195,27 +192,21 @@ void FGRadioTransmission::receiveATC(SGGeod tx_pos, double freq, string text, in
                                        text.replace(pos,1, hash_noise);
                                }
                                */
-                               double volume = (fabs(signal - 12.0) / 12);
-                               double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
-                               SG_LOG(SG_GENERAL, SG_BULK, "Usable signal at limit: " << signal);
-                               //cerr << "Usable signal at limit: " << signal << endl;
-                               fgSetDouble("/sim/sound/voices/voice/volume", volume);
+                               //double volume = (fabs(signal - 12.0) / 12);
+                               //double old_volume = fgGetDouble("/sim/sound/voices/voice/volume");
+                               
+                               //fgSetDouble("/sim/sound/voices/voice/volume", volume);
                                fgSetString("/sim/messages/atc", text.c_str());
-                               fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
+                               //fgSetDouble("/sim/sound/voices/voice/volume", old_volume);
                        }
                        else {
                                fgSetString("/sim/messages/atc", text.c_str());
                        }
-                       
                }
-               
        }
-       
 }
 
-/***  Implement radio attenuation              
-         based on the Longley-Rice propagation model
-***/
+
 double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
 
        
@@ -282,10 +273,10 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        double reverse_course = SGGeodesy::courseRad(sender_pos_c, own_pos_c);
        double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
        double probe_distance = 0.0;
-       /** If distance larger than this value (300 km), assume reception imposssible */
+       /** If distance larger than this value (300 km), assume reception imposssible to spare CPU cycles */
        if (distance_m > 300000)
                return -1.0;
-       /** If above 8000 meters, consider LOS mode and calculate free-space att */
+       /** If above 8000 meters, consider LOS mode and calculate free-space att to spare CPU cycles */
        if (own_alt > 8000) {
                dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
                SG_LOG(SG_GENERAL, SG_BULK,
@@ -320,9 +311,6 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        transmitter_height += _tx_antenna_height;
        receiver_height += _rx_antenna_height;
        
-       
-       SG_LOG(SG_GENERAL, SG_BULK,
-                       "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters");
        //cerr << "ITM:: RX-height: " << receiver_height << " meters, TX-height: " << transmitter_height << " meters, Distance: " << distance_m << " meters" << endl;
        _root_node->setDoubleValue("station[0]/rx-height", receiver_height);
        _root_node->setDoubleValue("station[0]/tx-height", transmitter_height);
@@ -393,8 +381,6 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
 
        for(int i=0;i<size;i++) {
                itm_elev[i]=elevations[i];
-               
-
        }
        
        if((transmission_type == 3) || (transmission_type == 4)) {
@@ -414,39 +400,43 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        }
        
        double pol_loss = 0.0;
+       // TODO: remove this check after we check a bit the axis calculations in this function
        if (_polarization == 1) {
                pol_loss = polarization_loss();
        }
-       SG_LOG(SG_GENERAL, SG_BULK,
-                       "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
+       //SG_LOG(SG_GENERAL, SG_BULK,
+       //              "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
        //cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
        _root_node->setDoubleValue("station[0]/link-budget", link_budget);
        _root_node->setDoubleValue("station[0]/terrain-attenuation", dbloss);
        _root_node->setStringValue("station[0]/prop-mode", strmode);
        _root_node->setDoubleValue("station[0]/clutter-attenuation", clutter_loss);
        _root_node->setDoubleValue("station[0]/polarization-attenuation", pol_loss);
-       //if (errnum == 4)      // if parameters are outside sane values for lrprop, the alternative method is used
+       //if (errnum == 4)      // if parameters are outside sane values for lrprop, bail out fast
        //      return -1;
+       
+       // temporary, keep this antenna radiation pattern code here
        double tx_pattern_gain = 0.0;
        double rx_pattern_gain = 0.0;
-       if (_root_node->getBoolValue("use-antenna-pattern", false)) {
-               double sender_heading = 270.0; // due West
-               double tx_antenna_bearing = sender_heading - reverse_course * SGD_RADIANS_TO_DEGREES;
-               double rx_antenna_bearing = own_heading - course * SGD_RADIANS_TO_DEGREES;
-               double rx_elev_angle = atan((itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m) * SGD_RADIANS_TO_DEGREES;
-               double tx_elev_angle = 0.0 - rx_elev_angle;
+       double sender_heading = 270.0; // due West
+       double tx_antenna_bearing = sender_heading - reverse_course * SGD_RADIANS_TO_DEGREES;
+       double rx_antenna_bearing = own_heading - course * SGD_RADIANS_TO_DEGREES;
+       double rx_elev_angle = atan((itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m) * SGD_RADIANS_TO_DEGREES;
+       double tx_elev_angle = 0.0 - rx_elev_angle;
+       if (_root_node->getBoolValue("use-tx-antenna-pattern", false)) {
                FGRadioAntenna* TX_antenna;
-               FGRadioAntenna* RX_antenna;
                TX_antenna = new FGRadioAntenna("Plot2");
                TX_antenna->set_heading(sender_heading);
                TX_antenna->set_elevation_angle(0);
                tx_pattern_gain = TX_antenna->calculate_gain(tx_antenna_bearing, tx_elev_angle);
+               delete TX_antenna;
+       }
+       if (_root_node->getBoolValue("use-rx-antenna-pattern", false)) {
+               FGRadioAntenna* RX_antenna;
                RX_antenna = new FGRadioAntenna("Plot2");
                RX_antenna->set_heading(own_heading);
                RX_antenna->set_elevation_angle(fgGetDouble("/orientation/pitch-deg"));
                rx_pattern_gain = RX_antenna->calculate_gain(rx_antenna_bearing, rx_elev_angle);
-               
-               delete TX_antenna;
                delete RX_antenna;
        }
        
@@ -467,10 +457,7 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
 
 }
 
-/*** Calculate losses due to vegetation and urban clutter (WIP)
-*       We are only worried about clutter loss, terrain influence 
-*       on the first Fresnel zone is calculated in the ITM functions
-***/
+
 void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[], deque<string> &materials,
        double transmitter_height, double receiver_height, int p_mode,
        double horizons[], double &clutter_loss) {
@@ -757,16 +744,13 @@ void FGRadioTransmission::calculate_clutter_loss(double freq, double itm_elev[],
                        
                }
        }
-       else if (p_mode == 2) {         //      troposcatter: ignore ground clutter for now...
+       else if (p_mode == 2) {         //      troposcatter: ignore ground clutter for now... maybe do something with weather
                clutter_loss = 0.0;
        }
        
 }
 
-/***   Temporary material properties database
-*              height: median clutter height
-*              density: radiowave attenuation factor
-***/
+
 void FGRadioTransmission::get_material_properties(string mat_name, double &height, double &density) {
        
        if(mat_name == "Landmass") {
@@ -878,14 +862,10 @@ void FGRadioTransmission::get_material_properties(string mat_name, double &heigh
        
 }
 
-/*** implement simple LOS propagation model (WIP)
-***/
+
 double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, int transmission_type) {
-       double frq_mhz;
-       if( (freq < 118.0) || (freq > 137.0) )
-               frq_mhz = 125.0;        // sane value, middle of bandplan
-       else
-               frq_mhz = freq;
+       
+       double frq_mhz = freq;
        double dbloss;
        double tx_pow = _transmitter_power;
        double ant_gain = _rx_antenna_gain + _tx_antenna_gain;
@@ -936,8 +916,7 @@ double FGRadioTransmission::LOS_calculate_attenuation(SGGeod pos, double freq, i
        // free-space loss (distance calculation should be changed)
        dbloss = 20 * log10(distance_m) +20 * log10(frq_mhz) -27.55;
        signal = link_budget - dbloss + pol_loss;
-       SG_LOG(SG_GENERAL, SG_BULK,
-                       "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm ");
+
        //cerr << "LOS:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm " << endl;
        return signal;
        
index 06e05e9707dba67f70fca0ef8920a7aa661437f4..06ab9889440fcd882a8dfaa35b8660dcc909037d 100644 (file)
@@ -36,9 +36,6 @@ using std::string;
 class FGRadioTransmission 
 {
 private:
-       bool isOperable() const
-               { return _operable; }
-       bool _operable; ///< is the unit serviceable, on, powered, etc
        
        double _receiver_sensitivity;
        double _transmitter_power;
@@ -55,44 +52,92 @@ private:
        SGPropertyNode *_root_node;
        int _propagation_model; /// 0 none, 1 round Earth, 2 ITM
        double polarization_loss();
+       
+       
+/***  Implement radio attenuation              
+*        based on the Longley-Rice propagation model
+*      ground_to_air: 0 for air to ground 1 for ground to air, 2 for air to air, 3 for pilot to ground, 4 for pilot to air
+*      @param: transmitter position, frequency, flag to indicate if the transmission is from a ground station
+*      @return: signal level above receiver treshhold sensitivity
+***/
        double ITM_calculate_attenuation(SGGeod tx_pos, double freq, int ground_to_air);
+       
+/*** a simple alternative LOS propagation model (WIP)
+*      @param: transmitter position, frequency, flag to indicate if the transmission is from a ground station
+*      @return: signal level above receiver treshhold sensitivity
+***/
        double LOS_calculate_attenuation(SGGeod tx_pos, double freq, int ground_to_air);
+       
+/*** Calculate losses due to vegetation and urban clutter (WIP)
+*       We are only worried about clutter loss, terrain influence 
+*       on the first Fresnel zone is calculated in the ITM functions
+*      @param: frequency, elevation data, terrain type, horizon distances, calculated loss
+*      @return: none
+***/
        void calculate_clutter_loss(double freq, double itm_elev[], std::deque<string> &materials,
                        double transmitter_height, double receiver_height, int p_mode,
                        double horizons[], double &clutter_loss);
+       
+/***   Temporary material properties database
+*              @param: terrain type, median clutter height, radiowave attenuation factor
+*              @return: none
+***/
        void get_material_properties(string mat_name, double &height, double &density);
        
+       
 public:
 
     FGRadioTransmission();
     ~FGRadioTransmission();
 
-    // a couple of setters and getters for convenience
+    /// a couple of setters and getters for convenience, call after initializing
+    /// frequency is in MHz, sensitivity in dBm, antenna gain and losses in dB, transmitter power in dBm
+    /// polarization can be: 0 horizontal, 1 vertical
     void setFrequency(double freq, int radio);
     double getFrequency(int radio);
-    void setTxPower(double txpower) { _transmitter_power = txpower; };
-    void setRxSensitivity(double sensitivity) { _receiver_sensitivity = sensitivity; };
-    void setTxAntennaHeight(double tx_antenna_height) { _tx_antenna_height = tx_antenna_height; };
-    void setRxAntennaHeight(double rx_antenna_height) { _rx_antenna_height = rx_antenna_height; };
-    void setTxAntennaGain(double tx_antenna_gain) { _tx_antenna_gain = tx_antenna_gain; };
-    void setRxAntennaGain(double rx_antenna_gain) { _rx_antenna_gain = rx_antenna_gain; };
-    void setTxLineLosses(double tx_line_losses) { _tx_line_losses = tx_line_losses; };
-    void setRxLineLosses(double rx_line_losses) { _rx_line_losses = rx_line_losses; };
-    void setPropagationModel(int model) { _propagation_model = model; };
-    void setPolarization(int polarization) { _polarization = polarization; };
-    // accessory functions for unit conversions
-    double watt_to_dbm(double power_watt);
-    double dbm_to_watt(double dbm);
-    double dbm_to_microvolt(double dbm);
+    inline void setTxPower(double txpower) { _transmitter_power = txpower; };
+    inline void setRxSensitivity(double sensitivity) { _receiver_sensitivity = sensitivity; };
+    inline void setTxAntennaHeight(double tx_antenna_height) { _tx_antenna_height = tx_antenna_height; };
+    inline void setRxAntennaHeight(double rx_antenna_height) { _rx_antenna_height = rx_antenna_height; };
+    inline void setTxAntennaGain(double tx_antenna_gain) { _tx_antenna_gain = tx_antenna_gain; };
+    inline void setRxAntennaGain(double rx_antenna_gain) { _rx_antenna_gain = rx_antenna_gain; };
+    inline void setTxLineLosses(double tx_line_losses) { _tx_line_losses = tx_line_losses; };
+    inline void setRxLineLosses(double rx_line_losses) { _rx_line_losses = rx_line_losses; };
+    inline void setPropagationModel(int model) { _propagation_model = model; };
+    inline void setPolarization(int polarization) { _polarization = polarization; };
+    
+    /// static convenience functions for unit conversions
+    static double watt_to_dbm(double power_watt);
+    static double dbm_to_watt(double dbm);
+    static double dbm_to_microvolt(double dbm);
     
     
-    // transmission_type: 0 for air to ground 1 for ground to air, 2 for air to air, 3 for pilot to ground, 4 for pilot to air
+/*** Receive ATC radio communication as text
+*      transmission_type: 0 for air to ground 1 for ground to air, 2 for air to air, 3 for pilot to ground, 4 for pilot to air
+*      @param: transmitter position, frequency, ATC text, flag to indicate whether the transmission comes from an ATC groundstation
+*      @return: none
+***/
     void receiveATC(SGGeod tx_pos, double freq, string text, int transmission_type);
+    
+/*** TODO: receive multiplayer chat message and voice
+*      @param: transmitter position, frequency, ATC text, flag to indicate whether the transmission comes from an ATC groundstation
+*      @return: none
+***/
     void receiveChat(SGGeod tx_pos, double freq, string text, int transmission_type);
-    // returns signal quality
-    // transmission_type: 0 for VOR, 1 for ILS
+    
+/*** TODO: receive navaid 
+*      @param: transmitter position, frequency, flag 
+*      @return: signal level above receiver treshhold sensitivity
+***/
     double receiveNav(SGGeod tx_pos, double freq, int transmission_type);
-    double receiveBeacon(double lat, double lon, double elev, double heading, double pitch);
+    
+/*** Call this function to receive an arbitrary signal
+*      for instance via the Nasal radioTransmission() function
+*      returns the signal value above receiver sensitivity treshhold
+*      @param: transmitter position, object heading in degrees (for antenna), object pitch angle in degrees 
+*      @return: signal level above receiver treshhold sensitivity
+***/
+    double receiveBeacon(SGGeod &tx_pos, double heading, double pitch);
 };
 
 
index d9a2cb6ff7753d3b260a18dd818b452734f06e91..7c4a387e67d41faf6adefddcb6c430fd85ddb4ec 100644 (file)
@@ -515,8 +515,9 @@ static naRef f_radioTransmission(naContext c, naRef me, int argc, naRef* args)
     elev = naNumValue(args[2]).num;
     heading = naNumValue(args[3]).num;
     pitch = naNumValue(args[4]).num;
+    SGGeod geod = SGGeod::fromDegM(lon, lat, elev * SG_FEET_TO_METER);
     FGRadioTransmission *radio = new FGRadioTransmission;
-    double signal = radio->receiveBeacon(lat,lon,elev,heading,pitch);
+    double signal = radio->receiveBeacon(geod, heading, pitch);
     delete radio;
     return naNum(signal);
 }