include_HEADERS = magvar.hxx
-libsgmagvar_a_SOURCES = magvar.cxx
+libsgmagvar_a_SOURCES = \
+ coremag.hxx coremag.cxx \
+ magvar.cxx
noinst_PROGRAMS = testmagvar
--- /dev/null
+// coremag.cxx -- compute local magnetic variation given position,
+// altitude, and date
+//
+// This is an implementation of the NIMA (formerly DMA) WMM2000
+//
+// http://www.nima.mil/GandG/ngdc-wmm2000.html
+//
+// Copyright (C) 2000 Edward A Williams <Ed_Williams@compuserve.com>
+//
+// Adapted from Excel 3.0 version 3/27/94 EAW
+// Recoded in C++ by Starry Chan
+// WMM95 added and rearranged in ANSI-C EAW 7/9/95
+// Put shell around program and made Borland & GCC compatible EAW 11/22/95
+// IGRF95 added 2/96 EAW
+// WMM2000 IGR2000 added 2/00 EAW
+// Released under GPL 3/26/00 EAW
+// Adaptions and modifications for the SimGear project 3/27/2000 CLO
+//
+// Removed all pow() calls and made static roots[][] arrays to
+// save many sqrt() calls on subsequent invocations
+// left old code as SGMagVarOrig() for testing purposes
+// 3/28/2000 Norman Vine -- nhv@yahoo.com
+//
+// Put in some bullet-proofing to handle magnetic and geographic poles.
+// 3/28/2000 EAW
+
+// The routine uses a spherical harmonic expansion of the magnetic
+// potential up to twelfth order, together with its time variation, as
+// described in Chapter 4 of "Geomagnetism, Vol 1, Ed. J.A.Jacobs,
+// Academic Press (London 1987)". The program first converts geodetic
+// coordinates (lat/long on elliptic earth and altitude) to spherical
+// geocentric (spherical lat/long and radius) coordinates. Using this,
+// the spherical (B_r, B_theta, B_phi) magnetic field components are
+// computed from the model. These are finally referred to surface (X, Y,
+// Z) coordinates.
+//
+// Fields are accurate to better than 200nT, variation and dip to
+// better than 0.5 degrees, with the exception of the declination near
+// the magnetic poles (where it is ill-defined) where the error may reach
+// 4 degrees or more.
+//
+// Variation is undefined at both the geographic and
+// magnetic poles, even though the field itself is well-behaved. To
+// avoid the routine blowing up, latitude entries corresponding to
+// the geographic poles are slightly offset. At the magnetic poles,
+// the routine returns zero variation.
+
+
+//
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Library General Public
+// License as published by the Free Software Foundation; either
+// version 2 of the License, or (at your option) any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// Library General Public License for more details.
+//
+// You should have received a copy of the GNU Library General Public
+// License along with this library; if not, write to the
+// Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+// Boston, MA 02111-1307, USA.
+//
+// $Id$
+
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+
+#include <simgear/constants.h>
+
+#include "coremag.hxx"
+
+
+#define max(a,b) (((a) > (b)) ? (a) : (b))
+
+static const double pi = 3.14159265358979;
+static const double a = 6378.16; /* major radius (km) IAU66 ellipsoid */
+static const double f = 1.0 / 298.25; /* inverse flattening IAU66 ellipsoid */
+static const double b = 6378.16 * (1.0 -1.0 / 298.25 );
+/* minor radius b=a*(1-f) */
+static const double r_0 = 6371.2; /* "mean radius" for spherical harmonic expansion */
+
+static double gnm_wmm2000[13][13] =
+{
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {-29616.0, -1722.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {-2266.7, 3070.2, 1677.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {1322.4, -2291.5, 1255.9, 724.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {932.1, 786.3, 250.6, -401.5, 106.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {-211.9, 351.6, 220.8, -134.5, -168.8, -13.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {73.8, 68.2, 74.1, -163.5, -3.8, 17.1, -85.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {77.4, -73.9, 2.2, 35.7, 7.3, 5.2, 8.4, -1.5, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {23.3, 7.3, -8.5, -6.6, -16.9, 8.6, 4.9, -7.8, -7.6, 0.0, 0.0, 0.0, 0.0},
+ {5.7, 8.5, 2.0, -9.8, 7.6, -7.0, -2.0, 9.2, -2.2, -6.6, 0.0, 0.0, 0.0},
+ {-2.2, -5.7, 1.6, -3.7, -0.6, 4.1, 2.2, 2.2, 4.6, 2.3, 0.1, 0.0, 0.0},
+ {3.3, -1.1, -2.4, 2.6, -1.3, -1.7, -0.6, 0.4, 0.7, -0.3, 2.3, 4.2, 0.0},
+ {-1.5, -0.2, -0.3, 0.5, 0.2, 0.9, -1.4, 0.6, -0.6, -1.0, -0.3, 0.3, 0.4},
+};
+
+static double hnm_wmm2000[13][13]=
+{
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 5194.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, -2484.8, -467.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, -224.7, 293.0, -486.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 273.3, -227.9, 120.9, -302.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 42.0, 173.8, -135.0, -38.6, 105.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, -17.4, 61.2, 63.2, -62.9, 0.2, 43.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, -62.3, -24.5, 8.9, 23.4, 15.0, -27.6, -7.8, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 12.4, -20.8, 8.4, -21.2, 15.5, 9.1, -15.5, -5.4, 0.0, 0.0, 0.0, 0.0},
+ {0.0, -20.4, 13.9, 12.0, -6.2, -8.6, 9.4, 5.0, -8.4, 3.2, 0.0, 0.0, 0.0},
+ {0.0, 0.9, -0.7, 3.9, 4.8, -5.3, -1.0, -2.4, 1.3, -2.3, -6.4, 0.0, 0.0},
+ {0.0, -1.5, 0.7, -1.1, -2.3, 1.3, -0.6, -2.8, -1.6, -0.1, -1.9, 1.4, 0.0},
+ {0.0, -1.0, 0.7, 2.2, -2.5, -0.2, 0.0, -0.2, 0.0, 0.2, -0.9, -0.2, 1.0},
+};
+
+static double gtnm_wmm2000[13][13]=
+{
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {14.7, 11.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {-13.6, -0.7, -1.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.3, -4.3, 0.9, -8.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {-1.6, 0.9, -7.6, 2.2, -3.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {-0.9, -0.2, -2.5, -2.7, -0.9, 1.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {1.2, 0.2, 1.7, 1.6, -0.1, -0.3, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {-0.4, -0.8, -0.2, 1.1, 0.4, 0.0, -0.2, -0.2, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {-0.3, 0.6, -0.8, 0.3, -0.2, 0.5, 0.0, -0.6, 0.1, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+};
+
+static double htnm_wmm2000[13][13]=
+{
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, -20.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, -21.5, -9.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 6.4, -1.3, -13.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 2.3, 0.7, 3.7, -0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 0.0, 2.1, 2.3, 3.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, -0.3, -1.7, -0.9, -1.0, -0.1, 1.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 1.4, 0.2, 0.7, 0.4, -0.3, -0.8, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, -0.5, 0.1, -0.2, 0.0, 0.1, -0.1, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
+};
+
+static const int nmax = 12;
+
+static double P[13][13];
+static double DP[13][13];
+static double gnm[13][13];
+static double hnm[13][13];
+static double sm[13];
+static double cm[13];
+
+static double root[13];
+static double roots[13][13][2];
+
+/* Convert date to Julian day 1950-2049 */
+unsigned long int yymmdd_to_julian_days( int yy, int mm, int dd )
+{
+ unsigned long jd;
+
+ yy = (yy < 50) ? (2000 + yy) : (1900 + yy);
+ jd = dd - 32075L + 1461L * (yy + 4800L + (mm - 14) / 12 ) / 4;
+ jd = jd + 367L * (mm - 2 - (mm - 14) / 12*12) / 12;
+ jd = jd - 3 * ((yy + 4900L + (mm - 14) / 12) / 100) / 4;
+
+ /* printf("julian date = %d\n", jd ); */
+ return jd;
+}
+
+
+/*
+ * return variation (in radians) given geodetic latitude (radians),
+ * longitude(radians), height (km) and (Julian) date
+ * N and E lat and long are positive, S and W negative
+*/
+
+double calc_magvar( double lat, double lon, double h, long dat, double* field )
+{
+ /* output field B_r,B_th,B_phi,B_x,B_y,B_z */
+ int n,m;
+ /* reference dates */
+ long date0_wmm2000 = yymmdd_to_julian_days(0,1,1);
+
+ double yearfrac,sr,r,theta,c,s,psi,fn,fn_0,B_r,B_theta,B_phi,X,Y,Z;
+ double sinpsi, cospsi, inv_s;
+
+ static int been_here = 0;
+
+ double sinlat = sin(lat);
+ double coslat = cos(lat);
+
+ /* convert to geocentric coords: */
+ // sr = sqrt(pow(a*coslat,2.0)+pow(b*sinlat,2.0));
+ sr = sqrt(a*a*coslat*coslat + b*b*sinlat*sinlat);
+ /* sr is effective radius */
+ theta = atan2(coslat * (h*sr + a*a),
+ sinlat * (h*sr + b*b));
+ /* theta is geocentric co-latitude */
+
+ r = h*h + 2.0*h * sr +
+ (a*a*a*a - ( a*a*a*a - b*b*b*b ) * sinlat*sinlat ) /
+ (a*a - (a*a - b*b) * sinlat*sinlat );
+
+ r = sqrt(r);
+
+ /* r is geocentric radial distance */
+ c = cos(theta);
+ s = sin(theta);
+ /* protect against zero divide at geographic poles */
+ inv_s = 1.0 / (s + (s == 0.)*1.0e-8);
+
+ /* zero out arrays */
+ for ( n = 0; n <= nmax; n++ ) {
+ for ( m = 0; m <= n; m++ ) {
+ P[n][m] = 0;
+ DP[n][m] = 0;
+ }
+ }
+
+ /* diagonal elements */
+ P[0][0] = 1;
+ P[1][1] = s;
+ DP[0][0] = 0;
+ DP[1][1] = c;
+ P[1][0] = c ;
+ DP[1][0] = -s;
+
+ // these values will not change for subsequent function calls
+ if( !been_here ) {
+ for ( n = 2; n <= nmax; n++ ) {
+ root[n] = sqrt((2.0*n-1) / (2.0*n));
+ }
+
+ for ( m = 0; m <= nmax; m++ ) {
+ double mm = m*m;
+ for ( n = max(m + 1, 2); n <= nmax; n++ ) {
+ roots[m][n][0] = sqrt((n-1)*(n-1) - mm);
+ roots[m][n][1] = 1.0 / sqrt( n*n - mm);
+ }
+ }
+ been_here = 1;
+ }
+
+ for ( n=2; n <= nmax; n++ ) {
+ // double root = sqrt((2.0*n-1) / (2.0*n));
+ P[n][n] = P[n-1][n-1] * s * root[n];
+ DP[n][n] = (DP[n-1][n-1] * s + P[n-1][n-1] * c) *
+ root[n];
+ }
+
+ /* lower triangle */
+ for ( m = 0; m <= nmax; m++ ) {
+ // double mm = m*m;
+ for ( n = max(m + 1, 2); n <= nmax; n++ ) {
+ // double root1 = sqrt((n-1)*(n-1) - mm);
+ // double root2 = 1.0 / sqrt( n*n - mm);
+ P[n][m] = (P[n-1][m] * c * (2.0*n-1) -
+ P[n-2][m] * roots[m][n][0]) *
+ roots[m][n][1];
+
+ DP[n][m] = ((DP[n-1][m] * c - P[n-1][m] * s) *
+ (2.0*n-1) - DP[n-2][m] * roots[m][n][0]) *
+ roots[m][n][1];
+ }
+ }
+
+ /* compute gnm, hnm at dat */
+ /* WMM2000 */
+ yearfrac = (dat - date0_wmm2000) / 365.25;
+ for ( n = 1; n <= nmax; n++ ) {
+ for ( m = 0; m <= nmax; m++ ) {
+ gnm[n][m] = gnm_wmm2000[n][m] + yearfrac * gtnm_wmm2000[n][m];
+ hnm[n][m] = hnm_wmm2000[n][m] + yearfrac * htnm_wmm2000[n][m];
+ }
+ }
+
+ /* compute sm (sin(m lon) and cm (cos(m lon)) */
+ for ( m = 0; m <= nmax; m++ ) {
+ sm[m] = sin(m * lon);
+ cm[m] = cos(m * lon);
+ }
+
+ /* compute B fields */
+ B_r = 0.0;
+ B_theta = 0.0;
+ B_phi = 0.0;
+ fn_0 = r_0/r;
+ fn = fn_0 * fn_0;
+
+ for ( n = 1; n <= nmax; n++ ) {
+ double c1_n=0;
+ double c2_n=0;
+ double c3_n=0;
+ for ( m = 0; m <= n; m++ ) {
+ double tmp = (gnm[n][m] * cm[m] + hnm[n][m] * sm[m]);
+ c1_n=c1_n + tmp * P[n][m];
+ c2_n=c2_n + tmp * DP[n][m];
+ c3_n=c3_n + m * (gnm[n][m] * sm[m] - hnm[n][m] * cm[m]) * P[n][m];
+ }
+ // fn=pow(r_0/r,n+2.0);
+ fn *= fn_0;
+ B_r = B_r + (n + 1) * c1_n * fn;
+ B_theta = B_theta - c2_n * fn;
+ B_phi = B_phi + c3_n * fn * inv_s;
+ }
+
+ /* Find geodetic field components: */
+ psi = theta - ((pi / 2.0) - lat);
+ sinpsi = sin(psi);
+ cospsi = cos(psi);
+ X = -B_theta * cospsi - B_r * sinpsi;
+ Y = B_phi;
+ Z = B_theta * sinpsi - B_r * cospsi;
+
+ field[0]=B_r;
+ field[1]=B_theta;
+ field[2]=B_phi;
+ field[3]=X;
+ field[4]=Y;
+ field[5]=Z; /* output fields */
+
+ /* find variation in radians */
+ /* return zero variation at magnetic pole X=Y=0. */
+ /* E is positive */
+ return (X != 0. || Y != 0.) ? atan2(Y, X) : (double) 0.;
+}
+
+
+#ifdef TEST_NHV_HACKS
+double SGMagVarOrig( double lat, double lon, double h, long dat, double* field )
+{
+ /* output field B_r,B_th,B_phi,B_x,B_y,B_z */
+ int n,m;
+ /* reference dates */
+ long date0_wmm2000 = yymmdd_to_julian_days(0,1,1);
+
+ double yearfrac,sr,r,theta,c,s,psi,fn,B_r,B_theta,B_phi,X,Y,Z;
+
+ /* convert to geocentric coords: */
+ sr = sqrt(pow(a*cos(lat),2.0)+pow(b*sin(lat),2.0));
+ /* sr is effective radius */
+ theta = atan2(cos(lat) * (h * sr + a * a),
+ sin(lat) * (h * sr + b * b));
+ /* theta is geocentric co-latitude */
+
+ r = h * h + 2.0*h * sr +
+ (pow(a,4.0) - (pow(a,4.0) - pow(b,4.0)) * pow(sin(lat),2.0)) /
+ (a * a - (a * a - b * b) * pow(sin(lat),2.0));
+
+ r = sqrt(r);
+
+ /* r is geocentric radial distance */
+ c = cos(theta);
+ s = sin(theta);
+
+ /* zero out arrays */
+ for ( n = 0; n <= nmax; n++ ) {
+ for ( m = 0; m <= n; m++ ) {
+ P[n][m] = 0;
+ DP[n][m] = 0;
+ }
+ }
+
+ /* diagonal elements */
+ P[0][0] = 1;
+ P[1][1] = s;
+ DP[0][0] = 0;
+ DP[1][1] = c;
+ P[1][0] = c ;
+ DP[1][0] = -s;
+
+ for ( n = 2; n <= nmax; n++ ) {
+ P[n][n] = P[n-1][n-1] * s * sqrt((2.0*n-1) / (2.0*n));
+ DP[n][n] = (DP[n-1][n-1] * s + P[n-1][n-1] * c) *
+ sqrt((2.0*n-1) / (2.0*n));
+ }
+
+ /* lower triangle */
+ for ( m = 0; m <= nmax; m++ ) {
+ for ( n = max(m + 1, 2); n <= nmax; n++ ) {
+ P[n][m] = (P[n-1][m] * c * (2.0*n-1) - P[n-2][m] *
+ sqrt(1.0*(n-1)*(n-1) - m * m)) /
+ sqrt(1.0* n * n - m * m);
+ DP[n][m] = ((DP[n-1][m] * c - P[n-1][m] * s) *
+ (2.0*n-1) - DP[n-2][m] *
+ sqrt(1.0*(n-1) * (n-1) - m * m)) /
+ sqrt(1.0* n * n - m * m);
+ }
+ }
+
+ /* compute gnm, hnm at dat */
+ /* WMM2000 */
+ yearfrac = (dat - date0_wmm2000) / 365.25;
+ for ( n = 1; n <= nmax; n++ ) {
+ for ( m = 0; m <= nmax; m++ ) {
+ gnm[n][m] = gnm_wmm2000[n][m] + yearfrac * gtnm_wmm2000[n][m];
+ hnm[n][m] = hnm_wmm2000[n][m] + yearfrac * htnm_wmm2000[n][m];
+ }
+ }
+
+ /* compute sm (sin(m lon) and cm (cos(m lon)) */
+ for ( m = 0; m <= nmax; m++ ) {
+ sm[m] = sin(m * lon);
+ cm[m] = cos(m * lon);
+ }
+
+ /* compute B fields */
+ B_r = 0.0;
+ B_theta = 0.0;
+ B_phi = 0.0;
+
+ for ( n = 1; n <= nmax; n++ ) {
+ double c1_n=0;
+ double c2_n=0;
+ double c3_n=0;
+ for ( m = 0; m <= n; m++ ) {
+ c1_n=c1_n + (gnm[n][m] * cm[m] + hnm[n][m] * sm[m]) * P[n][m];
+ c2_n=c2_n + (gnm[n][m] * cm[m] + hnm[n][m] * sm[m]) * DP[n][m];
+ c3_n=c3_n + m * (gnm[n][m] * sm[m] - hnm[n][m] * cm[m]) * P[n][m];
+ }
+ fn=pow(r_0/r,n+2.0);
+ B_r = B_r + (n + 1) * c1_n * fn;
+ B_theta = B_theta - c2_n * fn;
+ B_phi = B_phi + c3_n * fn / s;
+ }
+
+ /* Find geodetic field components: */
+ psi = theta - (pi / 2.0 - lat);
+ X = -B_theta * cos(psi) - B_r * sin(psi);
+ Y = B_phi;
+ Z = B_theta * sin(psi) - B_r * cos(psi);
+
+ field[0]=B_r;
+ field[1]=B_theta;
+ field[2]=B_phi;
+ field[3]=X;
+ field[4]=Y;
+ field[5]=Z; /* output fields */
+
+ /* find variation, leave in radians! */
+ return atan2(Y, X); /* E is positive */
+}
+#endif // TEST_NHV_HACKS
--- /dev/null
+// coremag.hxx -- compute local magnetic variation given position,
+// altitude, and date
+//
+// This is an implimentation of the NIMA WMM 2000
+//
+// http://www.nima.mil/GandG/ngdc-wmm2000.html
+//
+// Copyright (C) 2000 Edward A Williams <Ed_Williams@compuserve.com>
+//
+// Adapted from Excel 3.0 version 3/27/94 EAW
+// Recoded in C++ by Starry Chan
+// WMM95 added and rearranged in ANSI-C EAW 7/9/95
+// Put shell around program and made Borland & GCC compatible EAW 11/22/95
+// IGRF95 added 2/96 EAW
+// WMM2000 IGR2000 added 2/00 EAW
+// Released under GPL 3/26/00 EAW
+// Adaptions and modifications for the SimGear project 3/27/2000 CLO
+//
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Library General Public
+// License as published by the Free Software Foundation; either
+// version 2 of the License, or (at your option) any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// Library General Public License for more details.
+//
+// You should have received a copy of the GNU Library General Public
+// License along with this library; if not, write to the
+// Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+// Boston, MA 02111-1307, USA.
+//
+// $Id$
+
+
+#ifndef SG_MAGVAR_HXX
+#define SG_MAGVAR_HXX
+
+
+/* Convert date to Julian day 1950-2049 */
+unsigned long int yymmdd_to_julian_days( int yy, int mm, int dd );
+
+/* return variation (in degrees) given geodetic latitude (radians), longitude
+(radians) ,height (km) and (Julian) date
+N and E lat and long are positive, S and W negative
+*/
+double calc_magvar( double lat, double lon, double h, long dat, double* field );
+
+
+#endif // SG_MAGVAR_HXX
-// magvar.cxx -- compute local magnetic variation given position,
-// altitude, and date
+// magvar.cxx -- magnetic variation wrapper class
//
-// This is an implementation of the NIMA (formerly DMA) WMM2000
+// Written by Curtis Olson, started July 2000.
//
-// http://www.nima.mil/GandG/ngdc-wmm2000.html
+// Copyright (C) 2000 Curtis L. Olson - curt@flightgear.org
//
-// Copyright (C) 2000 Edward A Williams <Ed_Williams@compuserve.com>
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
//
-// Adapted from Excel 3.0 version 3/27/94 EAW
-// Recoded in C++ by Starry Chan
-// WMM95 added and rearranged in ANSI-C EAW 7/9/95
-// Put shell around program and made Borland & GCC compatible EAW 11/22/95
-// IGRF95 added 2/96 EAW
-// WMM2000 IGR2000 added 2/00 EAW
-// Released under GPL 3/26/00 EAW
-// Adaptions and modifications for the SimGear project 3/27/2000 CLO
-//
-// Removed all pow() calls and made static roots[][] arrays to
-// save many sqrt() calls on subsequent invocations
-// left old code as SGMagVarOrig() for testing purposes
-// 3/28/2000 Norman Vine -- nhv@yahoo.com
-//
-// Put in some bullet-proofing to handle magnetic and geographic poles.
-// 3/28/2000 EAW
-
-// The routine uses a spherical harmonic expansion of the magnetic
-// potential up to twelfth order, together with its time variation, as
-// described in Chapter 4 of "Geomagnetism, Vol 1, Ed. J.A.Jacobs,
-// Academic Press (London 1987)". The program first converts geodetic
-// coordinates (lat/long on elliptic earth and altitude) to spherical
-// geocentric (spherical lat/long and radius) coordinates. Using this,
-// the spherical (B_r, B_theta, B_phi) magnetic field components are
-// computed from the model. These are finally referred to surface (X, Y,
-// Z) coordinates.
-//
-// Fields are accurate to better than 200nT, variation and dip to
-// better than 0.5 degrees, with the exception of the declination near
-// the magnetic poles (where it is ill-defined) where the error may reach
-// 4 degrees or more.
-//
-// Variation is undefined at both the geographic and
-// magnetic poles, even though the field itself is well-behaved. To
-// avoid the routine blowing up, latitude entries corresponding to
-// the geographic poles are slightly offset. At the magnetic poles,
-// the routine returns zero variation.
-
-
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Library General Public
-// License as published by the Free Software Foundation; either
-// version 2 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Library General Public License for more details.
+// General Public License for more details.
//
-// You should have received a copy of the GNU Library General Public
-// License along with this library; if not, write to the
-// Free Software Foundation, Inc., 59 Temple Place - Suite 330,
-// Boston, MA 02111-1307, USA.
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
-#include <stdio.h>
-#include <stdlib.h>
-#include <math.h>
-
-#include "magvar.hxx"
-
-
-#define max(a,b) (((a) > (b)) ? (a) : (b))
-
-static const double pi = 3.14159265358979;
-static const double a = 6378.16; /* major radius (km) IAU66 ellipsoid */
-static const double f = 1.0 / 298.25; /* inverse flattening IAU66 ellipsoid */
-static const double b = 6378.16 * (1.0 -1.0 / 298.25 );
-/* minor radius b=a*(1-f) */
-static const double r_0 = 6371.2; /* "mean radius" for spherical harmonic expansion */
-
-static double gnm_wmm2000[13][13] =
-{
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {-29616.0, -1722.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {-2266.7, 3070.2, 1677.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {1322.4, -2291.5, 1255.9, 724.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {932.1, 786.3, 250.6, -401.5, 106.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {-211.9, 351.6, 220.8, -134.5, -168.8, -13.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {73.8, 68.2, 74.1, -163.5, -3.8, 17.1, -85.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {77.4, -73.9, 2.2, 35.7, 7.3, 5.2, 8.4, -1.5, 0.0, 0.0, 0.0, 0.0, 0.0},
- {23.3, 7.3, -8.5, -6.6, -16.9, 8.6, 4.9, -7.8, -7.6, 0.0, 0.0, 0.0, 0.0},
- {5.7, 8.5, 2.0, -9.8, 7.6, -7.0, -2.0, 9.2, -2.2, -6.6, 0.0, 0.0, 0.0},
- {-2.2, -5.7, 1.6, -3.7, -0.6, 4.1, 2.2, 2.2, 4.6, 2.3, 0.1, 0.0, 0.0},
- {3.3, -1.1, -2.4, 2.6, -1.3, -1.7, -0.6, 0.4, 0.7, -0.3, 2.3, 4.2, 0.0},
- {-1.5, -0.2, -0.3, 0.5, 0.2, 0.9, -1.4, 0.6, -0.6, -1.0, -0.3, 0.3, 0.4},
-};
+#ifdef HAVE_CONFIG_H
+# include <config.h>
+#endif
-static double hnm_wmm2000[13][13]=
-{
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 5194.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, -2484.8, -467.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, -224.7, 293.0, -486.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 273.3, -227.9, 120.9, -302.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 42.0, 173.8, -135.0, -38.6, 105.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, -17.4, 61.2, 63.2, -62.9, 0.2, 43.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, -62.3, -24.5, 8.9, 23.4, 15.0, -27.6, -7.8, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 12.4, -20.8, 8.4, -21.2, 15.5, 9.1, -15.5, -5.4, 0.0, 0.0, 0.0, 0.0},
- {0.0, -20.4, 13.9, 12.0, -6.2, -8.6, 9.4, 5.0, -8.4, 3.2, 0.0, 0.0, 0.0},
- {0.0, 0.9, -0.7, 3.9, 4.8, -5.3, -1.0, -2.4, 1.3, -2.3, -6.4, 0.0, 0.0},
- {0.0, -1.5, 0.7, -1.1, -2.3, 1.3, -0.6, -2.8, -1.6, -0.1, -1.9, 1.4, 0.0},
- {0.0, -1.0, 0.7, 2.2, -2.5, -0.2, 0.0, -0.2, 0.0, 0.2, -0.9, -0.2, 1.0},
-};
-
-static double gtnm_wmm2000[13][13]=
-{
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {14.7, 11.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {-13.6, -0.7, -1.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.3, -4.3, 0.9, -8.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {-1.6, 0.9, -7.6, 2.2, -3.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {-0.9, -0.2, -2.5, -2.7, -0.9, 1.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {1.2, 0.2, 1.7, 1.6, -0.1, -0.3, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {-0.4, -0.8, -0.2, 1.1, 0.4, 0.0, -0.2, -0.2, 0.0, 0.0, 0.0, 0.0, 0.0},
- {-0.3, 0.6, -0.8, 0.3, -0.2, 0.5, 0.0, -0.6, 0.1, 0.0, 0.0, 0.0, 0.0},
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
-};
-
-static double htnm_wmm2000[13][13]=
-{
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, -20.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, -21.5, -9.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 6.4, -1.3, -13.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 2.3, 0.7, 3.7, -0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 0.0, 2.1, 2.3, 3.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, -0.3, -1.7, -0.9, -1.0, -0.1, 1.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 1.4, 0.2, 0.7, 0.4, -0.3, -0.8, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, -0.5, 0.1, -0.2, 0.0, 0.1, -0.1, 0.3, 0.2, 0.0, 0.0, 0.0, 0.0},
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
- {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
-};
-
-static const int nmax = 12;
-
-static double P[13][13];
-static double DP[13][13];
-static double gnm[13][13];
-static double hnm[13][13];
-static double sm[13];
-static double cm[13];
-
-static double root[13];
-static double roots[13][13][2];
+#include <math.h>
-/* Convert date to Julian day 1950-2049 */
-unsigned long int yymmdd_to_julian_days( int yy, int mm, int dd )
-{
- unsigned long jd;
-
- yy = (yy < 50) ? (2000 + yy) : (1900 + yy);
- jd = dd - 32075L + 1461L * (yy + 4800L + (mm - 14) / 12 ) / 4;
- jd = jd + 367L * (mm - 2 - (mm - 14) / 12*12) / 12;
- jd = jd - 3 * ((yy + 4900L + (mm - 14) / 12) / 100) / 4;
+#include <simgear/misc/fgpath.hxx>
+#include <simgear/magvar/magvar.hxx>
- /* printf("julian date = %d\n", jd ); */
- return jd;
-}
+#include "coremag.hxx"
+#include "magvar.hxx"
-/* Convert degrees to radians */
-double deg_to_rad( double deg )
-{
- return deg*pi/180.;
+SGMagVar::SGMagVar() {
}
-
-/* Convert radians to degrees */
-double rad_to_deg( double rad )
-{
- return rad*180./pi;
+SGMagVar::~SGMagVar() {
}
-
-
-/*
- * return variation (in radians) given geodetic latitude (radians),
- * longitude(radians), height (km) and (Julian) date
- * N and E lat and long are positive, S and W negative
-*/
-
-double SGMagVar( double lat, double lon, double h, long dat, double* field )
-{
- /* output field B_r,B_th,B_phi,B_x,B_y,B_z */
- int n,m;
- /* reference dates */
- long date0_wmm2000 = yymmdd_to_julian_days(0,1,1);
-
- double yearfrac,sr,r,theta,c,s,psi,fn,fn_0,B_r,B_theta,B_phi,X,Y,Z;
- double sinpsi, cospsi, inv_s;
-
- static int been_here = 0;
-
- double sinlat = sin(lat);
- double coslat = cos(lat);
-
- /* convert to geocentric coords: */
- // sr = sqrt(pow(a*coslat,2.0)+pow(b*sinlat,2.0));
- sr = sqrt(a*a*coslat*coslat + b*b*sinlat*sinlat);
- /* sr is effective radius */
- theta = atan2(coslat * (h*sr + a*a),
- sinlat * (h*sr + b*b));
- /* theta is geocentric co-latitude */
-
- r = h*h + 2.0*h * sr +
- (a*a*a*a - ( a*a*a*a - b*b*b*b ) * sinlat*sinlat ) /
- (a*a - (a*a - b*b) * sinlat*sinlat );
-
- r = sqrt(r);
- /* r is geocentric radial distance */
- c = cos(theta);
- s = sin(theta);
- /* protect against zero divide at geographic poles */
- inv_s = 1.0 / (s + (s == 0.)*1.0e-8);
- /* zero out arrays */
- for ( n = 0; n <= nmax; n++ ) {
- for ( m = 0; m <= n; m++ ) {
- P[n][m] = 0;
- DP[n][m] = 0;
- }
- }
-
- /* diagonal elements */
- P[0][0] = 1;
- P[1][1] = s;
- DP[0][0] = 0;
- DP[1][1] = c;
- P[1][0] = c ;
- DP[1][0] = -s;
-
- // these values will not change for subsequent function calls
- if( !been_here ) {
- for ( n = 2; n <= nmax; n++ ) {
- root[n] = sqrt((2.0*n-1) / (2.0*n));
- }
-
- for ( m = 0; m <= nmax; m++ ) {
- double mm = m*m;
- for ( n = max(m + 1, 2); n <= nmax; n++ ) {
- roots[m][n][0] = sqrt((n-1)*(n-1) - mm);
- roots[m][n][1] = 1.0 / sqrt( n*n - mm);
- }
- }
- been_here = 1;
- }
-
- for ( n=2; n <= nmax; n++ ) {
- // double root = sqrt((2.0*n-1) / (2.0*n));
- P[n][n] = P[n-1][n-1] * s * root[n];
- DP[n][n] = (DP[n-1][n-1] * s + P[n-1][n-1] * c) *
- root[n];
- }
-
- /* lower triangle */
- for ( m = 0; m <= nmax; m++ ) {
- // double mm = m*m;
- for ( n = max(m + 1, 2); n <= nmax; n++ ) {
- // double root1 = sqrt((n-1)*(n-1) - mm);
- // double root2 = 1.0 / sqrt( n*n - mm);
- P[n][m] = (P[n-1][m] * c * (2.0*n-1) -
- P[n-2][m] * roots[m][n][0]) *
- roots[m][n][1];
-
- DP[n][m] = ((DP[n-1][m] * c - P[n-1][m] * s) *
- (2.0*n-1) - DP[n-2][m] * roots[m][n][0]) *
- roots[m][n][1];
- }
- }
-
- /* compute gnm, hnm at dat */
- /* WMM2000 */
- yearfrac = (dat - date0_wmm2000) / 365.25;
- for ( n = 1; n <= nmax; n++ ) {
- for ( m = 0; m <= nmax; m++ ) {
- gnm[n][m] = gnm_wmm2000[n][m] + yearfrac * gtnm_wmm2000[n][m];
- hnm[n][m] = hnm_wmm2000[n][m] + yearfrac * htnm_wmm2000[n][m];
- }
- }
-
- /* compute sm (sin(m lon) and cm (cos(m lon)) */
- for ( m = 0; m <= nmax; m++ ) {
- sm[m] = sin(m * lon);
- cm[m] = cos(m * lon);
- }
-
- /* compute B fields */
- B_r = 0.0;
- B_theta = 0.0;
- B_phi = 0.0;
- fn_0 = r_0/r;
- fn = fn_0 * fn_0;
-
- for ( n = 1; n <= nmax; n++ ) {
- double c1_n=0;
- double c2_n=0;
- double c3_n=0;
- for ( m = 0; m <= n; m++ ) {
- double tmp = (gnm[n][m] * cm[m] + hnm[n][m] * sm[m]);
- c1_n=c1_n + tmp * P[n][m];
- c2_n=c2_n + tmp * DP[n][m];
- c3_n=c3_n + m * (gnm[n][m] * sm[m] - hnm[n][m] * cm[m]) * P[n][m];
- }
- // fn=pow(r_0/r,n+2.0);
- fn *= fn_0;
- B_r = B_r + (n + 1) * c1_n * fn;
- B_theta = B_theta - c2_n * fn;
- B_phi = B_phi + c3_n * fn * inv_s;
- }
-
- /* Find geodetic field components: */
- psi = theta - ((pi / 2.0) - lat);
- sinpsi = sin(psi);
- cospsi = cos(psi);
- X = -B_theta * cospsi - B_r * sinpsi;
- Y = B_phi;
- Z = B_theta * sinpsi - B_r * cospsi;
-
- field[0]=B_r;
- field[1]=B_theta;
- field[2]=B_phi;
- field[3]=X;
- field[4]=Y;
- field[5]=Z; /* output fields */
-
- /* find variation in radians */
- /* return zero variation at magnetic pole X=Y=0. */
- /* E is positive */
- return (X != 0. || Y != 0.) ? atan2(Y, X) : (double) 0.;
+void SGMagVar::update( double lon, double lat, double alt_m, double jd ) {
+ // Calculate local magnetic variation
+ double field[6];
+ // cout << "alt_m = " << alt_m << endl;
+ magvar = calc_magvar( lat, lon, alt_m / 1000.0, (long)jd, field );
+ magdip = atan(field[5]/sqrt(field[3]*field[3]+field[4]*field[4]));
}
-
-#ifdef TEST_NHV_HACKS
-double SGMagVarOrig( double lat, double lon, double h, long dat, double* field )
-{
- /* output field B_r,B_th,B_phi,B_x,B_y,B_z */
- int n,m;
- /* reference dates */
- long date0_wmm2000 = yymmdd_to_julian_days(0,1,1);
-
- double yearfrac,sr,r,theta,c,s,psi,fn,B_r,B_theta,B_phi,X,Y,Z;
-
- /* convert to geocentric coords: */
- sr = sqrt(pow(a*cos(lat),2.0)+pow(b*sin(lat),2.0));
- /* sr is effective radius */
- theta = atan2(cos(lat) * (h * sr + a * a),
- sin(lat) * (h * sr + b * b));
- /* theta is geocentric co-latitude */
-
- r = h * h + 2.0*h * sr +
- (pow(a,4.0) - (pow(a,4.0) - pow(b,4.0)) * pow(sin(lat),2.0)) /
- (a * a - (a * a - b * b) * pow(sin(lat),2.0));
-
- r = sqrt(r);
-
- /* r is geocentric radial distance */
- c = cos(theta);
- s = sin(theta);
-
- /* zero out arrays */
- for ( n = 0; n <= nmax; n++ ) {
- for ( m = 0; m <= n; m++ ) {
- P[n][m] = 0;
- DP[n][m] = 0;
- }
- }
-
- /* diagonal elements */
- P[0][0] = 1;
- P[1][1] = s;
- DP[0][0] = 0;
- DP[1][1] = c;
- P[1][0] = c ;
- DP[1][0] = -s;
-
- for ( n = 2; n <= nmax; n++ ) {
- P[n][n] = P[n-1][n-1] * s * sqrt((2.0*n-1) / (2.0*n));
- DP[n][n] = (DP[n-1][n-1] * s + P[n-1][n-1] * c) *
- sqrt((2.0*n-1) / (2.0*n));
- }
-
- /* lower triangle */
- for ( m = 0; m <= nmax; m++ ) {
- for ( n = max(m + 1, 2); n <= nmax; n++ ) {
- P[n][m] = (P[n-1][m] * c * (2.0*n-1) - P[n-2][m] *
- sqrt(1.0*(n-1)*(n-1) - m * m)) /
- sqrt(1.0* n * n - m * m);
- DP[n][m] = ((DP[n-1][m] * c - P[n-1][m] * s) *
- (2.0*n-1) - DP[n-2][m] *
- sqrt(1.0*(n-1) * (n-1) - m * m)) /
- sqrt(1.0* n * n - m * m);
- }
- }
-
- /* compute gnm, hnm at dat */
- /* WMM2000 */
- yearfrac = (dat - date0_wmm2000) / 365.25;
- for ( n = 1; n <= nmax; n++ ) {
- for ( m = 0; m <= nmax; m++ ) {
- gnm[n][m] = gnm_wmm2000[n][m] + yearfrac * gtnm_wmm2000[n][m];
- hnm[n][m] = hnm_wmm2000[n][m] + yearfrac * htnm_wmm2000[n][m];
- }
- }
-
- /* compute sm (sin(m lon) and cm (cos(m lon)) */
- for ( m = 0; m <= nmax; m++ ) {
- sm[m] = sin(m * lon);
- cm[m] = cos(m * lon);
- }
-
- /* compute B fields */
- B_r = 0.0;
- B_theta = 0.0;
- B_phi = 0.0;
-
- for ( n = 1; n <= nmax; n++ ) {
- double c1_n=0;
- double c2_n=0;
- double c3_n=0;
- for ( m = 0; m <= n; m++ ) {
- c1_n=c1_n + (gnm[n][m] * cm[m] + hnm[n][m] * sm[m]) * P[n][m];
- c2_n=c2_n + (gnm[n][m] * cm[m] + hnm[n][m] * sm[m]) * DP[n][m];
- c3_n=c3_n + m * (gnm[n][m] * sm[m] - hnm[n][m] * cm[m]) * P[n][m];
- }
- fn=pow(r_0/r,n+2.0);
- B_r = B_r + (n + 1) * c1_n * fn;
- B_theta = B_theta - c2_n * fn;
- B_phi = B_phi + c3_n * fn / s;
- }
-
- /* Find geodetic field components: */
- psi = theta - (pi / 2.0 - lat);
- X = -B_theta * cos(psi) - B_r * sin(psi);
- Y = B_phi;
- Z = B_theta * sin(psi) - B_r * cos(psi);
-
- field[0]=B_r;
- field[1]=B_theta;
- field[2]=B_phi;
- field[3]=X;
- field[4]=Y;
- field[5]=Z; /* output fields */
-
- /* find variation, leave in radians! */
- return atan2(Y, X); /* E is positive */
-}
-#endif // TEST_NHV_HACKS
-// magvar.hxx -- compute local magnetic variation given position,
-// altitude, and date
+// magvar.hxx -- magnetic variation wrapper class
//
-// This is an implimentation of the NIMA WMM 2000
+// Written by Curtis Olson, started July 2000.
//
-// http://www.nima.mil/GandG/ngdc-wmm2000.html
+// Copyright (C) 2000 Curtis L. Olson - curt@flightgear.org
//
-// Copyright (C) 2000 Edward A Williams <Ed_Williams@compuserve.com>
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
//
-// Adapted from Excel 3.0 version 3/27/94 EAW
-// Recoded in C++ by Starry Chan
-// WMM95 added and rearranged in ANSI-C EAW 7/9/95
-// Put shell around program and made Borland & GCC compatible EAW 11/22/95
-// IGRF95 added 2/96 EAW
-// WMM2000 IGR2000 added 2/00 EAW
-// Released under GPL 3/26/00 EAW
-// Adaptions and modifications for the SimGear project 3/27/2000 CLO
-//
-// This library is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Library General Public
-// License as published by the Free Software Foundation; either
-// version 2 of the License, or (at your option) any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// Library General Public License for more details.
+// General Public License for more details.
//
-// You should have received a copy of the GNU Library General Public
-// License along with this library; if not, write to the
-// Free Software Foundation, Inc., 59 Temple Place - Suite 330,
-// Boston, MA 02111-1307, USA.
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
-#ifndef SG_MAGVAR_HXX
-#define SG_MAGVAR_HXX
+#ifndef _MAGVAR_HXX
+#define _MAGVAR_HXX
+
+
+#ifndef __cplusplus
+# error This library requires C++
+#endif
+
+
+#ifdef HAVE_CONFIG_H
+# include <config.h>
+#endif
+
+
+class SGMagVar {
+
+private:
+ double magvar;
+ double magdip;
-/* Convert date to Julian day 1950-2049 */
-unsigned long int yymmdd_to_julian_days( int yy, int mm, int dd );
+public:
-/* Convert degrees to radians */
-double deg_to_rad( double deg );
+ SGMagVar();
+ ~SGMagVar();
-/* Convert radians to degrees */
-double rad_to_deg( double rad );
+ // recalculate the magnetic offset and dip
+ void update( double lon, double lat, double alt_m, double jd );
-/* return variation (in degrees) given geodetic latitude (radians), longitude
-(radians) ,height (km) and (Julian) date
-N and E lat and long are positive, S and W negative
-*/
-double SGMagVar( double lat, double lon, double h, long dat, double* field );
+ double get_magvar() const { return magvar; }
+ double get_magdip() const { return magdip; }
+};
-#endif // SG_MAGVAR_HXX
+#endif // _LIGHT_HXX
#include <stdlib.h>
#include <math.h>
-#include "magvar.hxx"
+#include <simgear/constants.h>
+
+#include "coremag.hxx"
int main(int argc, char *argv[])
}
-var = SGMagVar( deg_to_rad(lat_deg), deg_to_rad(lon_deg), h,
- yymmdd_to_julian_days(yy,mm,dd), field );
+var = calc_magvar( DEG_TO_RAD * lat_deg, DEG_TO_RAD * lon_deg, h,
+ yymmdd_to_julian_days(yy,mm,dd), field );
fprintf(stdout,"%6.0lf %6.0lf %6.0lf\n", field[0], field[1], field[2] );
fprintf(stdout,"%6.0lf %6.0lf %6.0lf\n", field[3], field[4], field[5] );
fprintf(stdout,"%6.0lf %6.0lf %6.0lf %4.2lf %4.2lf \n",
field[3],field[4],field[5],
- rad_to_deg(atan(field[5]/pow(field[3]*field[3]+field[4]*field[4],0.5))),
- rad_to_deg(var));
+ RAD_TO_DEG * (atan(field[5]/pow(field[3]*field[3]+field[4]*field[4],0.5))),
+ RAD_TO_DEG * var);
exit(0);
}