MakeTargetDistanceStr( APData, distance );
// This changes the AutoPilot Heading
// following cast needed
- ApHeadingDialogInput->setValue ((float)APData->TargetHeading );
+ ApHeadingDialogInput->
+ setValue((float)APData->TargetHeading);
// Force this !
APData->waypoint_hold = true ;
APData->heading_hold = true;
return ( y );
};
-
-
-/* Direct and inverse distance functions */
-/** Proceedings of the 7th International Symposium on Geodetic
- Computations, 1985
- "The Nested Coefficient Method for Accurate Solutions of Direct
- and
- Inverse Geodetic Problems With Any Length"
- Zhang Xue-Lian
- pp 747-763
- */
-/* modified for FlightGear to use WGS84 only Norman Vine */
-
-//#include "dstazfns.h"
-#include <math.h>
-#define GEOD_INV_PI (3.14159265358979323846)
-
-/* s == distance */
-/* az = azimuth */
-
-/* for WGS_84 a = 6378137.000, rf = 298.257223563; */
-
-static double M0( double e2 )
-{ //double e4 = e2*e2;
- return GEOD_INV_PI*(1.0 - e2*( 1.0/4.0 + e2*( 3.0/64.0 + e2*(5.0/256.0) )))/2.0;
-}
-/* s == distance */
-int geo_direct_wgs_84 ( double alt, double lat1, double lon1, double az1, double s,
- double *lat2, double *lon2, double *az2 )
-{
- double a = 6378137.000, rf = 298.257223563;
- double RADDEG = (GEOD_INV_PI)/180.0, testv = 1.0E-10;
- double f = ( rf > 0.0 ? 1.0/rf : 0.0 );
- double b = a*(1.0-f), e2 = f*(2.0-f);
- double phi1 = lat1*RADDEG, lam1 = lon1*RADDEG;
- double sinphi1 = sin(phi1), cosphi1 = cos(phi1);
- double azm1 = az1*RADDEG;
- double sinaz1 = sin(azm1), cosaz1 = cos(azm1);
-
-
- if( fabs(s) < 0.01 ) /* distance < centimeter => congruency */
- { *lat2 = lat1;
- *lon2 = lon1;
- *az2 = 180.0 + az1;
- if( *az2 > 360.0 ) *az2 -= 360.0;
- return 0;
- }
- else
- if( cosphi1 ) /* non-polar origin */
- { /* u1 is reduced latitude */
- double tanu1 = sqrt(1.0-e2)*sinphi1/cosphi1;
- double sig1 = atan2(tanu1,cosaz1);
- double cosu1 = 1.0/sqrt( 1.0 + tanu1*tanu1 ), sinu1 = tanu1*cosu1;
- double sinaz = cosu1*sinaz1, cos2saz = 1.0-sinaz*sinaz;
- double us = cos2saz*e2/(1.0-e2);
- /* Terms */
- double ta = 1.0+us*(4096.0+us*(-768.0+us*(320.0-175.0*us)))/16384.0,
- tb = us*(256.0+us*(-128.0+us*(74.0-47.0*us)))/1024.0,
- tc = 0;
- /* FIRST ESTIMATE OF SIGMA (SIG) */
- double first = s/(b*ta); /* !!*/
- double sig = first;
- double c2sigm, sinsig,cossig, temp,denom,rnumer, dlams, dlam;
- do
- { c2sigm = cos(2.0*sig1+sig);
- sinsig = sin(sig); cossig = cos(sig);
- temp = sig;
- sig = first +
- tb*sinsig*(c2sigm+tb*(cossig*(-1.0+2.0*c2sigm*c2sigm) -
- tb*c2sigm*(-3.0+4.0*sinsig*sinsig)
- *(-3.0+4.0*c2sigm*c2sigm)/6.0)
- /4.0);
- }
- while( fabs(sig-temp) > testv);
- /* LATITUDE OF POINT 2 */
- /* DENOMINATOR IN 2 PARTS (TEMP ALSO USED LATER) */
- temp = sinu1*sinsig-cosu1*cossig*cosaz1;
- denom = (1.0-f)*sqrt(sinaz*sinaz+temp*temp);
- /* NUMERATOR */
- rnumer = sinu1*cossig+cosu1*sinsig*cosaz1;
- *lat2 = atan2(rnumer,denom)/RADDEG;
- /* DIFFERENCE IN LONGITUDE ON AUXILARY SPHERE (DLAMS ) */
- rnumer = sinsig*sinaz1;
- denom = cosu1*cossig-sinu1*sinsig*cosaz1;
- dlams = atan2(rnumer,denom);
- /* TERM C */
- tc = f*cos2saz*(4.0+f*(4.0-3.0*cos2saz))/16.0;
- /* DIFFERENCE IN LONGITUDE */
- dlam = dlams-(1.0-tc)*f*sinaz*(sig+tc*sinsig*
- (c2sigm+
- tc*cossig*(-1.0+2.0*
- c2sigm*c2sigm)));
- *lon2 = (lam1+dlam)/RADDEG;
- if(*lon2 > 180.0 ) *lon2 -= 360.0;
- if(*lon2 < -180.0 ) *lon2 += 360.0;
- /* AZIMUTH - FROM NORTH */
- *az2 = atan2(-sinaz,temp)/RADDEG;
- if( fabs(*az2) < testv ) *az2 = 0.0;
- if( *az2 < 0.0) *az2 += 360.0;
- return 0;
- }
- else /* phi1 == 90 degrees, polar origin */
- { double dM = a*M0(e2) - s;
- double paz = ( phi1 < 0.0 ? 180.0 : 0.0 );
- return geo_direct_wgs_84( alt, 0.0, lon1, paz, dM,lat2,lon2,az2 );
- }
-}
-
-int geo_inverse_wgs_84( double alt, double lat1, double lon1, double lat2,
- double lon2, double *az1, double *az2, double *s )
-{
- double a = 6378137.000, rf = 298.257223563;
- int iter=0;
- double RADDEG = (GEOD_INV_PI)/180.0, testv = 1.0E-10;
- double f = ( rf > 0.0 ? 1.0/rf : 0.0 );
- double b = a*(1.0-f), e2 = f*(2.0-f);
- double phi1 = lat1*RADDEG, lam1 = lon1*RADDEG;
- double sinphi1 = sin(phi1), cosphi1 = cos(phi1);
- double phi2 = lat2*RADDEG, lam2 = lon2*RADDEG;
- double sinphi2 = sin(phi2), cosphi2 = cos(phi2);
-
- if( (fabs(lat1-lat2) < testv &&
- ( fabs(lon1-lon2) < testv) || fabs(lat1-90.0) < testv ) )
- { /* TWO STATIONS ARE IDENTICAL : SET DISTANCE & AZIMUTHS TO ZERO */
- *az1 = 0.0; *az2 = 0.0; *s = 0.0;
- return 0;
- } else
- if( fabs(cosphi1) < testv ) /* initial point is polar */
- {
- int k = geo_inverse_wgs_84( alt, lat2,lon2,lat1,lon1, az1,az2,s );
- b = *az1; *az1 = *az2; *az2 = b;
- return 0;
- } else
- if( fabs(cosphi2) < testv ) /* terminal point is polar */
- {
- int k = geo_inverse_wgs_84( alt, lat1,lon1,lat1,lon1+180.0,
- az1,az2,s );
- *s /= 2.0;
- *az2 = *az1 + 180.0;
- if( *az2 > 360.0 ) *az2 -= 360.0;
- return 0;
- } else /* Geodesic passes through the pole (antipodal) */
- if( (fabs( fabs(lon1-lon2) - 180 ) < testv) &&
- (fabs(lat1+lat2) < testv) )
- {
- double s1,s2;
- geo_inverse_wgs_84( alt, lat1,lon1, lat1,lon2, az1,az2, &s1 );
- geo_inverse_wgs_84( alt, lat2,lon2, lat1,lon2, az1,az2, &s2 );
- *az2 = *az1;
- *s = s1 + s2;
- return 0;
- } else /* antipodal and polar points don't get here */
- {
- double dlam = lam2 - lam1, dlams = dlam;
- double sdlams,cdlams, sig,sinsig,cossig, sinaz,
- cos2saz, c2sigm;
- double tc,temp, us,rnumer,denom, ta,tb;
- double cosu1,sinu1, sinu2,cosu2;
- /* Reduced latitudes */
- temp = (1.0-f)*sinphi1/cosphi1;
- cosu1 = 1.0/sqrt(1.0+temp*temp);
- sinu1 = temp*cosu1;
- temp = (1.0-f)*sinphi2/cosphi2;
- cosu2 = 1.0/sqrt(1.0+temp*temp);
- sinu2 = temp*cosu2;
-
- do {
- sdlams = sin(dlams), cdlams = cos(dlams);
- sinsig = sqrt(cosu2*cosu2*sdlams*sdlams+
- (cosu1*sinu2-sinu1*cosu2*cdlams)*
- (cosu1*sinu2-sinu1*cosu2*cdlams));
- cossig = sinu1*sinu2+cosu1*cosu2*cdlams;
-
- sig = atan2(sinsig,cossig);
- sinaz = cosu1*cosu2*sdlams/sinsig;
- cos2saz = 1.0-sinaz*sinaz;
- c2sigm = (sinu1 == 0.0 || sinu2 == 0.0 ? cossig :
- cossig-2.0*sinu1*sinu2/cos2saz);
- tc = f*cos2saz*(4.0+f*(4.0-3.0*cos2saz))/16.0;
- temp = dlams;
- dlams = dlam+(1.0-tc)*f*sinaz*
- (sig+tc*sinsig*
- (c2sigm+tc*cossig*(-1.0+2.0*c2sigm*c2sigm)));
- if (fabs(dlams) > GEOD_INV_PI && iter++ > 50)
- return iter;
- } while ( fabs(temp-dlams) > testv);
-
- us = cos2saz*(a*a-b*b)/(b*b); /* !! */
- /* BACK AZIMUTH FROM NORTH */
- rnumer = -(cosu1*sdlams);
- denom = sinu1*cosu2-cosu1*sinu2*cdlams;
- *az2 = atan2(rnumer,denom)/RADDEG;
- if( fabs(*az2) < testv ) *az2 = 0.0;
- if(*az2 < 0.0) *az2 += 360.0;
- /* FORWARD AZIMUTH FROM NORTH */
- rnumer = cosu2*sdlams;
- denom = cosu1*sinu2-sinu1*cosu2*cdlams;
- *az1 = atan2(rnumer,denom)/RADDEG;
- if( fabs(*az1) < testv ) *az1 = 0.0;
- if(*az1 < 0.0) *az1 += 360.0;
- /* Terms a & b */
- ta = 1.0+us*(4096.0+us*(-768.0+us*(320.0-175.0*us)))/
- 16384.0;
- tb = us*(256.0+us*(-128.0+us*(74.0-47.0*us)))/1024.0;
- /* GEODETIC DISTANCE */
- *s = b*ta*(sig-tb*sinsig*
- (c2sigm+tb*(cossig*(-1.0+2.0*c2sigm*c2sigm)-tb*
- c2sigm*(-3.0+4.0*sinsig*sinsig)*
- (-3.0+4.0*c2sigm*c2sigm)/6.0)/
- 4.0));
- return 0;
- }
-}