#include "ls_cockpit.h"
#include "ls_constants.h"
#include "ls_types.h"
+#include "c172_aero.h"
+
#include <math.h>
#include <stdio.h>
extern COCKPIT cockpit_;
-FILE *out;
+
SCALAR interp(SCALAR *y_table, SCALAR *x_table, int Ntable, SCALAR x)
{
}
else if(x >= x_table[Ntable-1])
{
- y=y_table[Ntable-1];
- /* printf("x larger than x_table[N]: %g %g %d\n",x,x_table[NCL-1],Ntable-1); */
- }
+ slope=(y_table[Ntable-1]-y_table[Ntable-2])/(x_table[Ntable-1]-x_table[Ntable-2]);
+ y=slope*(x-x_table[Ntable-1]) +y_table[Ntable-1];
+
+/* printf("x larger than x_table[N]: %g %g %d\n",x,x_table[NCL-1],Ntable-1);
+ */ }
else /*x is within the table, interpolate linearly to find y value*/
{
return y;
}
-void record()
-{
- fprintf(out,"%g,%g,%g,%g,%g,%g,%g,%g,%g,",Long_control,Lat_control,Rudder_pedal,Aft_trim,Fwd_trim,V_rel_wind,Dynamic_pressure,P_body,R_body);
- fprintf(out,"%g,%g,%g,%g,%g,%g,%g,%g,%g,%g,",Alpha,Cos_alpha,Sin_alpha,Alpha_dot,Q_body,Theta_dot,Sin_theta,Cos_theta,Beta,Cos_beta,Sin_beta);
- fprintf(out,"%g,%g,%g,%g,%g,%g,%g,%g\n",Sin_phi,Cos_phi,F_X_aero,F_Y_aero,F_Z_aero,M_l_aero,M_m_aero,M_n_aero);
- fflush(out);
-}
void aero( SCALAR dt, int Initialize ) {
+
+
static int init = 0;
static SCALAR trim_inc = 0.0002;
- SCALAR long_trim;
-
- SCALAR elevator, aileron, rudder;
-
static SCALAR alpha_ind[NCL]={-0.087,0,0.175,0.209,0.24,0.262,0.278,0.303,0.314,0.332,0.367};
static SCALAR CLtable[NCL]={-0.14,0.31,1.21,1.376,1.51249,1.591,1.63,1.60878,1.53712,1.376,1.142};
-
-
-
-
- /*Note that CLo,Cdo,Cmo will likely change with flap setting so
- they may not be declared static in the future */
-
-
- static SCALAR CLadot=1.7;
- static SCALAR CLq=3.9;
- static SCALAR CLde=0.43;
- static SCALAR CLo=0;
-
-
- static SCALAR Cdo=0.031;
- static SCALAR Cda=0.13; /*Not used*/
- static SCALAR Cdde=0.06;
-
- static SCALAR Cma=-0.89;
- static SCALAR Cmadot=-5.2;
- static SCALAR Cmq=-12.4;
- static SCALAR Cmo=-0.062;
- static SCALAR Cmde=-1.28;
-
- static SCALAR Clbeta=-0.089;
- static SCALAR Clp=-0.47;
- static SCALAR Clr=0.096;
- static SCALAR Clda=0.178;
- static SCALAR Cldr=0.0147;
-
- static SCALAR Cnbeta=0.065;
- static SCALAR Cnp=-0.03;
- static SCALAR Cnr=-0.099;
- static SCALAR Cnda=-0.053;
- static SCALAR Cndr=-0.0657;
-
- static SCALAR Cybeta=-0.31;
- static SCALAR Cyp=-0.037;
- static SCALAR Cyr=0.21;
- static SCALAR Cyda=0.0;
- static SCALAR Cydr=0.187;
-
- /*nondimensionalization quantities*/
- /*units here are ft and lbs */
- static SCALAR cbar=4.9; /*mean aero chord ft*/
- static SCALAR b=35.8; /*wing span ft */
- static SCALAR Sw=174; /*wing planform surface area ft^2*/
- static SCALAR rPiARe=0.054; /*reciprocal of Pi*AR*e*/
-
- SCALAR W=Mass/INVG;
-
- SCALAR CLwbh,CL,cm,cd,cn,cy,croll,cbar_2V,b_2V,qS,qScbar,qSb,ps,rs;
-
- SCALAR F_X_wind,F_Y_wind,F_Z_wind,W_X,W_Y,W_Z;
-
-
-
-
-
- if (Initialize != 0)
- {
-
-
- out=fopen("flight.csv","w");
- /* Initialize aero coefficients */
-
- }
-
- record();
+
+ /* printf("Initialize= %d\n",Initialize); */
+/* printf("Initializing aero model...Initialize= %d\n", Initialize);
+ */ CLadot=1.7;
+ CLq=3.9;
+ CLde=0.43;
+ CLo=0;
+
+
+ Cdo=0.031;
+ Cda=0.13; /*Not used*/
+ Cdde=0.06;
+
+ Cma=-0.89;
+ Cmadot=-5.2;
+ Cmq=-12.4;
+ Cmo=-0.015;
+ Cmde=-1.28;
+
+ Clbeta=-0.089;
+ Clp=-0.47;
+ Clr=0.096;
+ Clda=-0.178;
+ Cldr=0.0147;
+
+ Cnbeta=0.065;
+ Cnp=-0.03;
+ Cnr=-0.099;
+ Cnda=-0.053;
+ Cndr=-0.0657;
+
+ Cybeta=-0.31;
+ Cyp=-0.037;
+ Cyr=0.21;
+ Cyda=0.0;
+ Cydr=0.187;
+
+ /*nondimensionalization quantities*/
+ /*units here are ft and lbs */
+ cbar=4.9; /*mean aero chord ft*/
+ b=35.8; /*wing span ft */
+ Sw=174; /*wing planform surface area ft^2*/
+ rPiARe=0.054; /*reciprocal of Pi*AR*e*/
+
+ MaxTakeoffWeight=2550;
+ EmptyWeight=1500;
+
+ Zcg=0.51;
/*
LaRCsim uses:
rudder > 0 => ANL
*/
- if(Aft_trim) long_trim = long_trim - trim_inc;
- if(Fwd_trim) long_trim = long_trim + trim_inc;
+ /*do weight & balance here since there is no better place*/
+ Weight=Mass / INVG;
- /*scale pct control to degrees deflection*/
- if ((Long_control+long_trim) <= 0)
- elevator=(Long_control+long_trim)*-28*DEG_TO_RAD;
- else
- elevator=(Long_control+long_trim)*23*DEG_TO_RAD;
+ if(Weight > 2550)
+ { Weight=2550; }
+ else if(Weight < 1500)
+ { Weight=1500; }
- aileron = Lat_control*17.5*DEG_TO_RAD;
- rudder = Rudder_pedal*16*DEG_TO_RAD;
+ if(Dx_cg > 0.5586)
+ { Dx_cg = 0.5586; }
+ else if(Dx_cg < -0.4655)
+ { Dx_cg = -0.4655; }
+ Cg=Dx_cg/cbar +0.25;
+ Dz_cg=Zcg*cbar;
+
- /*check control surface travel limits*/
- /* if((elevator+long_trim) > 23)
- elevator=23;
- else if((elevator+long_trim) < -28)
- elevator=-23; */
-
+
+ long_trim=0;
+ if(Aft_trim) long_trim = long_trim - trim_inc;
+ if(Fwd_trim) long_trim = long_trim + trim_inc;
+
+/* printf("Long_control: %7.4f, long_trim: %7.4f,DEG_TO_RAD: %7.4f, RAD_TO_DEG: %7.4f\n",Long_control,long_trim,DEG_TO_RAD,RAD_TO_DEG);
+ */ /*scale pct control to degrees deflection*/
+ if ((Long_control+long_trim) <= 0)
+ elevator=(Long_control+long_trim)*28*DEG_TO_RAD;
+ else
+ elevator=(Long_control+long_trim)*23*DEG_TO_RAD;
+
+ aileron = -1*Lat_control*17.5*DEG_TO_RAD;
+ rudder = -1*Rudder_pedal*16*DEG_TO_RAD;
/*
The aileron travel limits are 20 deg. TEU and 15 deg TED
but since we don't distinguish between left and right we'll
use the average here (17.5 deg)
*/
- /* if(fabs(aileron) > 17.5)
- aileron = 17.5;
- if(fabs(rudder) > 16)
- rudder = 16; */
+
/*calculate rate derivative nondimensionalization (is that a word?) factors */
/*hack to avoid divide by zero*/
b_2V=0;
}
+
/*calcuate the qS nondimensionalization factors*/
qS=Dynamic_pressure*Sw;
qScbar=qS*cbar;
qSb=qS*b;
- /*transform the aircraft rotation rates*/
- ps=-P_body*Cos_alpha + R_body*Sin_alpha;
- rs=-P_body*Sin_alpha + R_body*Cos_alpha;
+/* printf("aero: Wb: %7.4f, Ub: %7.4f, Alpha: %7.4f, elev: %7.4f, ail: %7.4f, rud: %7.4f, long_trim: %7.4f\n",W_body,U_body,Alpha*RAD_TO_DEG,elevator*RAD_TO_DEG,aileron*RAD_TO_DEG,rudder*RAD_TO_DEG,long_trim*RAD_TO_DEG);
+ */ //printf("Theta: %7.4f, Gamma: %7.4f, Beta: %7.4f, Phi: %7.4f, Psi: %7.4f\n",Theta*RAD_TO_DEG,Gamma_vert_rad*RAD_TO_DEG,Beta*RAD_TO_DEG,Phi*RAD_TO_DEG,Psi*RAD_TO_DEG);
+
/* sum coefficients */
CLwbh = interp(CLtable,alpha_ind,NCL,Alpha);
CL = CLo + CLwbh + (CLadot*Alpha_dot + CLq*Theta_dot)*cbar_2V + CLde*elevator;
cd = Cdo + rPiARe*CL*CL + Cdde*elevator;
- cy = Cybeta*Beta + (Cyp*ps + Cyr*rs)*b_2V + Cyda*aileron + Cydr*rudder;
+ cy = Cybeta*Beta + (Cyp*P_body + Cyr*R_body)*b_2V + Cyda*aileron + Cydr*rudder;
- cm = Cmo + Cma*Alpha + (Cmq*Theta_dot + Cmadot*Alpha_dot)*cbar_2V + Cmde*(elevator+long_trim);
- cn = Cnbeta*Beta + (Cnp*ps + Cnr*rs)*b_2V + Cnda*aileron + Cndr*rudder;
- croll=Clbeta*Beta + (Clp*ps + Clr*rs)*b_2V + Clda*aileron + Cldr*rudder;
+ cm = Cmo + Cma*Alpha + (Cmq*Q_body + Cmadot*Alpha_dot)*cbar_2V + Cmde*(elevator+long_trim);
+ cn = Cnbeta*Beta + (Cnp*P_body + Cnr*R_body)*b_2V + Cnda*aileron + Cndr*rudder;
+ croll=Clbeta*Beta + (Clp*P_body + Clr*R_body)*b_2V + Clda*aileron + Cldr*rudder;
- /*calculate wind axes forces*/
+/* printf("aero: CL: %7.4f, Cd: %7.4f, Cm: %7.4f, Cy: %7.4f, Cn: %7.4f, Cl: %7.4f\n",CL,cd,cm,cy,cn,croll);
+ */ /*calculate wind axes forces*/
F_X_wind=-1*cd*qS;
F_Y_wind=cy*qS;
F_Z_wind=-1*CL*qS;
+/* printf("V_rel_wind: %7.4f, Fxwind: %7.4f Fywind: %7.4f Fzwind: %7.4f\n",V_rel_wind,F_X_wind,F_Y_wind,F_Z_wind);
+ */
/*calculate moments and body axis forces */
- /*find body-axis components of weight*/
- /*with earth axis to body axis transform */
- W_X=-1*W*Sin_theta;
- W_Y=W*Sin_phi*Cos_theta;
- W_Z=W*Cos_phi*Cos_theta;
+
/* requires ugly wind-axes to body-axes transform */
- F_X_aero = W_X + F_X_wind*Cos_alpha*Cos_beta - F_Y_wind*Cos_alpha*Sin_beta - F_Z_wind*Sin_alpha;
- F_Y_aero = W_Y + F_X_wind*Sin_beta + F_Z_wind*Cos_beta;
- F_Z_aero = W_Z*NZ + F_X_wind*Sin_alpha*Cos_beta - F_Y_wind*Sin_alpha*Sin_beta + F_Z_wind*Cos_alpha;
+ F_X_aero = F_X_wind*Cos_alpha*Cos_beta - F_Y_wind*Cos_alpha*Sin_beta - F_Z_wind*Sin_alpha;
+ F_Y_aero = F_X_wind*Sin_beta + F_Y_wind*Cos_beta;
+ F_Z_aero = F_X_wind*Sin_alpha*Cos_beta - F_Y_wind*Sin_alpha*Sin_beta + F_Z_wind*Cos_alpha;
/*no axes transform here */
- M_l_aero = I_xx*croll*qSb;
- M_m_aero = I_yy*cm*qScbar;
- M_n_aero = I_zz*cn*qSb;
-
+ M_l_aero = croll*qSb;
+ M_m_aero = cm*qScbar;
+ M_n_aero = cn*qSb;
+
+/* printf("I_yy: %7.4f, qScbar: %7.4f, qbar: %7.4f, Sw: %7.4f, cbar: %7.4f, 0.5*rho*V^2: %7.4f\n",I_yy,qScbar,Dynamic_pressure,Sw,cbar,0.5*0.0023081*V_rel_wind*V_rel_wind);
+ */
+/* printf("Fxaero: %7.4f Fyaero: %7.4f Fzaero: %7.4f Weight: %7.4f\n",F_X_aero,F_Y_aero,F_Z_aero,W);
+ *//* printf("Maero: %7.4f Naero: %7.4f Raero: %7.4f\n",M_m_aero,M_n_aero,M_l_aero);
+ */
}
#include <FDM/LaRCsim/ls_generic.h>
#include <FDM/LaRCsim/ls_interface.h>
#include <FDM/LaRCsim/ls_constants.h>
+#include <FDM/LaRCsim/atmos_62.h>
+/* #include <FDM/LaRCsim/ls_trim_fs.h> */
+#include <FDM/LaRCsim/c172_aero.h>
+
+#include <math.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//simple "one-at-a-time" longitudinal trimming routine
+typedef struct
+{
+ double latitude,longitude,altitude;
+ double vc,alpha,beta,gamma;
+ double theta,phi,psi;
+ double weight,cg;
+ int use_gamma_tmg;
+}InitialConditions;
+
+// Units for setIC
+// vc knots (calibrated airspeed, close to indicated)
+// altitude ft
+// all angles in degrees
+// weight lbs
+// cg %MAC
+// if use_gamma_tmg =1 then theta will be computed
+// from theta=alpha+gamma and the value given will
+// be ignored. Otherwise gamma is computed from
+// gamma=theta-alpha
+void setIC(InitialConditions IC)
+{
+ SCALAR vtfps,u,v,w,vt_east;
+ SCALAR vnu,vnv,vnw,vteu,vtev,vtew,vdu,vdv,vdw;
+ SCALAR alphar,betar,thetar,phir,psir,gammar;
+ SCALAR sigma,ps,Ts,a;
+
+ Mass=IC.weight*INVG;
+ Dx_cg=(IC.cg-0.25)*4.9;
+
+ Latitude=IC.latitude*DEG_TO_RAD;
+ Longitude=IC.longitude*DEG_TO_RAD;
+ Altitude=IC.altitude;
+ ls_geod_to_geoc( Latitude, Altitude, &Sea_level_radius, &Lat_geocentric);
+
+ ls_atmos(IC.altitude,&sigma,&a,&Ts,&ps);
+ vtfps=sqrt(1/sigma*IC.vc*IC.vc)*1.68781;
+ alphar=IC.alpha*DEG_TO_RAD;
+ betar=IC.beta*DEG_TO_RAD;
+ gammar=IC.gamma*DEG_TO_RAD;
+
+
+ phir=IC.phi*DEG_TO_RAD;
+ psir=IC.psi*DEG_TO_RAD;
+
+ if(IC.use_gamma_tmg == 1)
+ {
+ thetar=alphar+gammar;
+ }
+ else
+ {
+ thetar=IC.theta*DEG_TO_RAD;
+ gammar=thetar-alphar;
+ }
+
+ u=vtfps*cos(alphar)*cos(betar);
+ v=vtfps*sin(betar);
+ w=vtfps*sin(alphar)*cos(betar);
+
+ vnu=u*cos(thetar)*cos(psir);
+ vnv=v*(-sin(psir)*cos(phir)+sin(phir)*sin(thetar)*cos(psir));
+ vnw=w*(sin(phir)*sin(psir)+cos(phir)*sin(thetar)*cos(psir));
+
+ V_north=vnu+vnv+vnw;
+
+ vteu=u*cos(thetar)*sin(psir);
+ vtev=v*(cos(phir)*cos(psir)+sin(phir)*sin(thetar)*sin(psir));
+ vtew=w*(-sin(phir)*cos(psir)+cos(phir)*sin(thetar)*sin(psir));
+
+ vt_east=vteu+vtev+vtew;
+ V_east=vt_east+ OMEGA_EARTH*Sea_level_radius*cos(Lat_geocentric);
+
+ vdu=u*-sin(thetar);
+ vdv=v*cos(thetar)*sin(phir);
+ vdw=w*cos(thetar)*cos(phir);
+
+ V_down=vdu+vdv+vdw;
+
+ Theta=thetar;
+ Phi=phir;
+ Psi=psir;
+
+}
+
+
+int trim_long(int kmax, InitialConditions IC)
+{
+ double elevator,alpha;
+ double tol=1E-3;
+ double a_tol=tol/10;
+ double alpha_step=0.001;
+ int k=0,i,j=0,jmax=10,sum=0;
+ ls_loop(0.0,-1);
+ do{
+ //printf("k: %d\n",k);
+ while((fabs(W_dot_body) > tol) && (j < jmax))
+ {
+
+ IC.alpha+=W_dot_body*0.05;
+ if((IC.alpha < -5) || (IC.alpha > 21))
+ j=jmax;
+ setIC(IC);
+ ls_loop(0.0,-1);
+/* printf("IC.alpha: %g, Alpha: %g, wdot: %g\n",IC.alpha,Alpha*RAD_TO_DEG,W_dot_body);
+ */ j++;
+ }
+ sum+=j;
+/* printf("\tTheta: %7.4f, Alpha: %7.4f, wdot: %10.6f, j: %d\n",Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,W_dot_body,j);
+ */ j=0;
+ while((fabs(U_dot_body) > tol) && (j < jmax))
+ {
+
+ Throttle_pct-=U_dot_body*0.005;
+ if((Throttle_pct < 0) || (Throttle_pct > 1))
+ Throttle_pct=0.2;
+ setIC(IC);
+ ls_loop(0.0,-1);
+ j++;
+ }
+ sum+=j;
+/* printf("\tThrottle_pct: %7.4f, udot: %10.6f, j: %d\n",Throttle_pct,U_dot_body,j);
+ */ j=0;
+ while((fabs(Q_dot_body) > a_tol) && (j < jmax))
+ {
+
+ Long_control+=Q_dot_body*0.001;
+ if((Long_control < -1) || (Long_control > 1))
+ j=jmax;
+ setIC(IC);
+ ls_loop(0.0,-1);
+ j++;
+ }
+ sum+=j;
+ if(Long_control >= 0)
+ elevator=Long_control*23;
+ else
+ elevator=Long_control*28;
+/* printf("\televator: %7.4f, qdot: %10.6f, j: %d\n",elevator,Q_dot_body,j);
+ */ k++;j=0;
+ }while(((fabs(W_dot_body) > tol) || (fabs(U_dot_body) > tol) || (fabs(Q_dot_body) > tol)) && (k < kmax));
+ /* printf("Total Iterations: %d\n",sum); */
+ return k;
+}
+
+int trim_ground(int kmax, InitialConditions IC)
+{
+ double elevator,alpha,qdot_prev,alt_prev,step;
+ double tol=1E-3;
+ double a_tol=tol/10;
+ double alpha_step=0.001;
+ int k=0,i,j=0,jmax=40,sum=0,m=0;
+ Throttle_pct=0;
+ Brake_pct=1;
+ Theta=5*DEG_TO_RAD;
+ IC.altitude=Runway_altitude;
+ printf("udot: %g\n",U_dot_body);
+ setIC(IC);
+ printf("Altitude: %g, Runway_altitude: %g\n",Altitude,Runway_altitude);
+ qdot_prev=1.0E6;
+
+ ls_loop(0.0,-1);
+
+ do{
+ //printf("k: %d\n",k);
+ step=1;
+ printf("IC.altitude: %g, Altitude: %g, Runway_altitude: %g,wdot: %g,F_Z_gear: %g, M_m_gear: %g,F_Z: %g\n",IC.altitude,Altitude,Runway_altitude,W_dot_body,F_Z_gear,M_m_gear,F_Z);
+
+ m=0;
+ while((fabs(W_dot_body) > tol) && (m < 10))
+ {
+
+ j=0;
+
+ do{
+ alt_prev=IC.altitude;
+ IC.altitude+=step;
+ setIC(IC);
+ ls_loop(0.0,-1);
+ printf("IC.altitude: %g, Altitude: %g, Runway_altitude: %g,wdot: %g,F_Z: %g\n",IC.altitude,Altitude,Runway_altitude,W_dot_body,F_Z);
+ j++;
+ }while((W_dot_body < 0) && (j < jmax));
+ IC.altitude-=step;
+ step/=10;
+ printf("step: %g\n",step);
+ m++;
+
+ }
+ sum+=j;
+ printf("IC.altitude: %g, Altitude: %g, Runway_altitude: %g,wdot: %g,F_Z_gear: %g, M_m_gear: %g,F_Z: %g\n",IC.altitude,Altitude,Runway_altitude,W_dot_body,F_Z_gear,M_m_gear,F_Z);
+
+ j=0;
+
+ while((Q_dot_body <= qdot_prev) && (j < jmax))
+ {
+
+
+ qdot_prev=Q_dot_body;
+ IC.theta+=Q_dot_body;
+ setIC(IC);
+ ls_loop(0.0,-1);
+ j++;
+
+ printf("\tTheta: %7.4f, qdot: %10.6f, qdot_prev: %10.6f, j: %d\n",Theta*RAD_TO_DEG,Q_dot_body,qdot_prev,j);
+ }
+ IC.theta-=qdot_prev;
+ sum+=j;
+
+ printf("\tTheta: %7.4f, qdot: %10.6f, W_dot_body: %g\n",Theta,Q_dot_body,W_dot_body);
+ j=0;
+ if(W_dot_body > tol)
+ {
+ step=1;
+ while((W_dot_body > 0) && (j <jmax))
+ {
+ IC.altitude-=step;
+ setIC(IC);
+ ls_loop(0.0,-1);
+ j++;
+ }
+ }
+ k++;j=0;
+ }while(((fabs(W_dot_body) > tol) || (fabs(Q_dot_body) > tol)) && (k < kmax));
+ printf("Total Iterations: %d\n",sum);
+ return k;
+}
+void do_trims(int kmax,FILE *out,InitialConditions IC)
+{
+ int k=0,i;
+ double speed,elevator,cmcl;
+ out=fopen("trims.out","w");
+ speed=55;
+
+ for(i=1;i<=5;i++)
+ {
+ switch(i)
+ {
+ case 1: IC.weight=1500;IC.cg=0.155;break;
+ case 2: IC.weight=1500;IC.cg=0.364;break;
+ case 3: IC.weight=1950;IC.cg=0.155;break;
+ case 4: IC.weight=2550;IC.cg=0.257;break;
+ case 5: IC.weight=2550;IC.cg=0.364;break;
+ }
+
+ speed=50;
+ while(speed <= 150)
+ {
+ IC.vc=speed;
+ Long_control=0;Theta=0;Throttle_pct=0.0;
+
+ k=trim_long(kmax,IC);
+ if(Long_control <= 0)
+ elevator=Long_control*28;
+ else
+ elevator=Long_control*23;
+ if(fabs(CL) > 1E-3)
+ {
+ cmcl=cm / CL;
+ }
+ if(k < kmax)
+ {
+ fprintf(out,"%g,%g,%g,%g,%g,%d",V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control,Throttle_pct,Gamma_vert_rad,k);
+ fprintf(out,",%g,%g,%g,%g,%g\n",CL,cm,cmcl,Weight,Cg);
+/* printf("%g,%g,%g,%g,%g,%g,%g,%g,%g,%g\n",V_calibrated_kts,Alpha*RAD_TO_DEG,elevator,CL,cm,Cmo,Cma,Cmde,Mass*32.174,Dx_cg);
+ */ }
+ else
+ {
+ printf("kmax exceeded at: %g knots, %g lbs, %g %%MAC\n",V_calibrated_kts,Weight,Cg);
+ printf("wdot: %g, udot: %g, qdot: %g\n\n",W_dot_body,U_dot_body,Q_dot_body);
+
+ }
+ speed+=10;
+ }
+ }
+ fclose(out);
+}
+
+void do_stick_pull(int kmax, SCALAR tmax,FILE *out,InitialConditions IC)
+{
+
+ SCALAR htarget,hgain,hdiffgain,herr,herr_diff,herrprev;
+ SCALAR theta_trim,elev_trim,time;
+ int k;
+ k=trim_long(kmax,IC);
+ printf("Trim:\n\tAlpha: %10.6f, elev: %10.6f, Throttle: %10.6f\n\twdot: %10.6f, qdot: %10.6f, udot: %10.6f\n",Alpha*RAD_TO_DEG,Long_control,Throttle_pct,W_dot_body,U_dot_body,Q_dot_body);
+
+ htarget=0;
+
+ hgain=1;
+ hdiffgain=1;
+ elev_trim=Long_control;
+ out=fopen("stick_pull.out","w");
+ herr=Q_body-htarget;
+
+ //fly steady-level for 2 seconds, well, zero pitch rate anyway
+ while(time < 2.0)
+ {
+ herrprev=herr;
+ ls_update(1);
+ herr=Q_body-htarget;
+ herr_diff=herr-herrprev;
+ Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff);
+ time+=0.01;
+/* printf("Time: %7.4f, Alt: %7.4f, Alpha: %7.4f, pelev: %7.4f, qdot: %7.4f, udot: %7.4f, Phi: %7.4f, Psi: %7.4f\n",time,Altitude,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,U_dot_body,Phi,Psi);
+ printf("Mcg: %7.4f, Mrp: %7.4f, Maero: %7.4f, Meng: %7.4f, Mgear: %7.4f, Dx_cg: %7.4f, Dz_cg: %7.4f\n\n",M_m_cg,M_m_rp,M_m_aero,M_m_engine,M_m_gear,Dx_cg,Dz_cg);
+ */ fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_true_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG);
+ fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude);
+ }
+
+ //begin untrimmed climb at theta_trim + 2 degrees
+ hgain=4;
+ hdiffgain=2;
+ theta_trim=Theta;
+ htarget=theta_trim;
+ herr=Theta-htarget;
+ while(time < tmax)
+ {
+ //ramp in the target theta
+ if(htarget < (theta_trim + 2*DEG_TO_RAD))
+ {
+ htarget+= 0.01*DEG_TO_RAD;
+ }
+ herrprev=herr;
+ ls_update(1);
+ herr=Theta-htarget;
+ herr_diff=herr-herrprev;
+ Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff);
+ time+=0.01;
+/* printf("Time: %7.4f, Alt: %7.4f, Alpha: %7.4f, pelev: %7.4f, qdot: %7.4f, udot: %7.4f, Phi: %7.4f, Psi: %7.4f\n",time,Altitude,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,U_dot_body,Phi,Psi);
+ printf("Mcg: %7.4f, Mrp: %7.4f, Maero: %7.4f, Meng: %7.4f, Mgear: %7.4f, Dx_cg: %7.4f, Dz_cg: %7.4f\n\n",M_m_cg,M_m_rp,M_m_aero,M_m_engine,M_m_gear,Dx_cg,Dz_cg);
+ */ fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_true_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG);
+ fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude);
+ }
+ printf("%g,%g\n",theta_trim*RAD_TO_DEG,htarget*RAD_TO_DEG);
+ fclose(out);
+}
+
+void do_takeoff(FILE *out)
+{
+ SCALAR htarget,hgain,hdiffgain,elev_trim,elev_trim_save,herr;
+ SCALAR time,herrprev,herr_diff;
+
+ htarget=0;
+
+ hgain=1;
+ hdiffgain=1;
+ elev_trim=Long_control;
+ elev_trim_save=elev_trim;
+
+
+ out=fopen("takeoff.out","w");
+ herr=Q_body-htarget;
+
+ //attempt to maintain zero pitch rate during the roll
+ while((V_calibrated_kts < 61) && (time < 30.0))
+ {
+ /* herrprev=herr;*/
+ ls_update(1);
+ /*herr=Q_body-htarget;
+ herr_diff=herr-herrprev;
+ Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff); */
+ time+=0.01;
+ printf("Time: %7.4f, Vc: %7.4f, Alpha: %7.4f, pelev: %7.4f, qdot: %7.4f, udot: %7.4f, U: %7.4f, W: %7.4f\n",time,V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,U_dot_body,U_body,W_body);
+// printf("Mcg: %7.4f, Mrp: %7.4f, Maero: %7.4f, Meng: %7.4f, Mgear: %7.4f, Dx_cg: %7.4f, Dz_cg: %7.4f\n\n",M_m_cg,M_m_rp,M_m_aero,M_m_engine,M_m_gear,Dx_cg,Dz_cg);
+// fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_calibrated_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG);
+ fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude);
+
+ }
+ //At Vr, ramp in 10% nose up elevator in 0.5 seconds
+ elev_trim_save=0;
+ printf("At Vr, rotate...\n");
+ while((Q_body < 3.0*RAD_TO_DEG) && (time < 30.0))
+ {
+ Long_control-=0.01;
+ ls_update(1);
+ printf("Time: %7.4f, Vc: %7.4f, Alpha: %7.4f, pelev: %7.4f, q: %7.4f, cm: %7.4f, U: %7.4f, W: %7.4f\n",time,V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control*100,Q_body*RAD_TO_DEG,cm,U_body,W_body);
+
+ fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_calibrated_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG);
+ fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude);
+ time +=0.01;
+
+ }
+ //Maintain 15 degrees theta for the climbout
+ htarget=15*DEG_TO_RAD;
+ herr=Theta-htarget;
+ hgain=10;
+ hdiffgain=1;
+ elev_trim=Long_control;
+ while(time < 30.0)
+ {
+ herrprev=herr;
+ ls_update(1);
+ herr=Theta-htarget;
+ herr_diff=herr-herrprev;
+ Long_control=elev_trim+(hgain*herr + hdiffgain*herr_diff);
+ time+=0.01;
+ printf("Time: %7.4f, Alt: %7.4f, Speed: %7.4f, Theta: %7.4f\n",time,Altitude,V_calibrated_kts,Theta*RAD_TO_DEG);
+ fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,%20.8f,",time,V_calibrated_kts,Theta*RAD_TO_DEG,Alpha*RAD_TO_DEG,Q_body*RAD_TO_DEG,Alpha_dot*RAD_TO_DEG,Q_dot_body*RAD_TO_DEG,Throttle_pct,elevator*RAD_TO_DEG);
+ fprintf(out,"%20.8f,%20.8f,%20.8f,%20.8f,%20.8f\n",CL,CLwbh,cm,cd,Altitude);
+ }
+ fclose(out);
+ printf("Speed: %7.4f, Alt: %7.4f, Alpha: %7.4f, pelev: %7.4f, q: %7.4f, udot: %7.4f\n",V_true_kts,Altitude,Alpha*RAD_TO_DEG,Long_control,Q_body*RAD_TO_DEG,U_dot_body);
+ printf("F_down_total: %7.4f, F_Z_aero: %7.4f, F_X: %7.4f, M_m_cg: %7.4f\n\n",F_down+Mass*Gravity,F_Z_aero,F_X,M_m_cg);
+
+
+
+
+}
// Initialize the LaRCsim flight model, dt is the time increment for
// each subsequent iteration through the EOM
}
+
// Run an iteration of the EOM (equations of motion)
-int main() {
+int main(int argc, char *argv[]) {
double save_alt = 0.0;
- int multiloop=1;
- double time=0;
+ int multiloop=1,k=0,i;
+ double time=0,elev_trim,elev_trim_save,elevator,speed,cmcl;
+ FILE *out;
+ double hgain,hdiffgain,herr,herrprev,herr_diff,htarget;
+ InitialConditions IC;
- Altitude=1000; /*BFI as given by airnav*/
- Latitude=47.5299892;
- Longitude=122.3019561;
- Lat_geocentric=Latitude;
- Lon_geocentric=Longitude;
- Radius_to_vehicle=Altitude+EQUATORIAL_RADIUS;
- Lat_control = 0;
- Long_control = 0;
- Long_trim = 0;
- Rudder_pedal = 0;
- Throttle_pct = 0.0;
- Brake_pct = 1.0;
- V_north=200;
- V_east=0;
- V_down=0;
+ if(argc < 6)
+ {
+ printf("Need args: $c172 speed alt alpha elev throttle\n");
+ exit(1);
+ }
- printf("Calling init...\n");
- fgLaRCsimInit(0.05);
+ IC.latitude=47.5299892; //BFI
+ IC.longitude=122.3019561;
+ Runway_altitude = 18.0;
+ IC.altitude=strtod(argv[2],NULL);
+ IC.vc=strtod(argv[1],NULL);
+ IC.alpha=10;
+ IC.beta=0;
+ IC.theta=strtod(argv[3],NULL);
+ IC.use_gamma_tmg=0;
+ IC.phi=0;
+ IC.psi=0;
+ IC.weight=1500;
+ IC.cg=0.155;
+ Long_control=strtod(argv[4],NULL);
+ setIC(IC);
+ printf("Out setIC\n");
+ ls_ForceAltitude(IC.altitude);
+ fgLaRCsimInit(0.01);
- /* copy control positions into the LaRCsim structure */
+ while(IC.alpha < 30.0)
+ {
+ setIC(IC);
+ ls_loop(0.0,-1);
+ printf("CL: %g ,Alpha: %g\n",CL,IC.alpha);
+ IC.alpha+=1.0;
+ }
+
+ /*trim_ground(10,IC);*/
+ /* printf("%g,%g\n",Theta,Gamma_vert_rad);
+ printf("trim_long():\n");
+ k=trim_long(200,IC);
+ Throttle_pct=Throttle_pct-0.2;
+ printf("%g,%g\n",Theta,Gamma_vert_rad);
+ out=fopen("dive.out","w");
+ time=0;
+ while(time < 30.0)
+ {
+ ls_update(1);
+
+ cmcl=cm/CL;
+ fprintf(out,"%g,%g,%g,%g,%g,%d",V_calibrated_kts,Alpha*RAD_TO_DEG,Long_control,Throttle_pct,Gamma_vert_rad,k);
+ fprintf(out,",%g,%g,%g\n",CL,cm,cmcl);
+ time+=0.01;
+ }
+ fclose(out);
+ printf("V_rel_wind: %8.2f, Alpha: %8.2f, Beta: %8.2f\n",V_rel_wind,Alpha*RAD_TO_DEG,Beta*RAD_TO_DEG);
+ printf("Theta: %8.2f, Gamma: %8.2f, Alpha_tmg: %8.2f\n",Theta*RAD_TO_DEG,Gamma_vert_rad*RAD_TO_DEG,Theta*RAD_TO_DEG-Gamma_vert_rad*RAD_TO_DEG);
+ printf("V_north: %8.2f, V_east_rel_ground: %8.2f, V_east: %8.2f, V_down: %8.2f\n",V_north,V_east_rel_ground,V_east,V_down);
+ printf("Long_control: %8.2f, Throttle_pct: %8.2f\n",Long_control,Throttle_pct);
+ printf("k: %d, udot: %8.4f, wdot: %8.4f, qdot: %8.5f\n",k,U_dot_body,W_dot_body,Q_dot_body);
-
+ printf("\nls_update():\n");
+ ls_update(1);
+ printf("V_rel_wind: %8.2f, Alpha: %8.2f, Beta: %8.2f\n",V_rel_wind,Alpha*RAD_TO_DEG,Beta*RAD_TO_DEG);
+ printf("Theta: %8.2f, Gamma: %8.2f, Alpha_tmg: %8.2f\n",Theta*RAD_TO_DEG,Gamma_vert_rad*RAD_TO_DEG,Theta*RAD_TO_DEG-Gamma_vert_rad*RAD_TO_DEG);
+ */
+
/* Inform LaRCsim of the local terrain altitude */
- Runway_altitude = 18.0;
- printf("Entering Loop\n");
- printf("Speed: %7.4f, Lat: %7.4f, Long: %7.4f, Alt: %7.4f\n\n",V_true_kts,Latitude,Longitude,Altitude);
- while (time < 0.2)
- {
- time=time+0.05;
- ls_update(multiloop);
- printf("Speed: %7.4f, Fxeng: %7.4f, Fxaero: %7.4f, Fxgear: %7.4f Alt: %7.4f\n\n",V_true_kts,F_X_engine,F_X_aero,F_X_gear,Altitude);
-
-
-
- }
- /* // printf("%d FG_Altitude = %.2f\n", i, FG_Altitude * 0.3048);
- // printf("%d Altitude = %.2f\n", i, Altitude * 0.3048);
- // translate LaRCsim back to FG structure so that the
- // autopilot (and the rest of the sim can use the updated
- // values
- //fgLaRCsim_2_FGInterface(f); */
-
-
-
+
return 1;
}
return( 0 );
}
+*/
-// Convert from the LaRCsim generic_ struct to the FGInterface struct
-int fgLaRCsim_2_FGInterface (FGInterface& f) {
-
- // Mass properties and geometry values
- f.set_Inertias( Mass, I_xx, I_yy, I_zz, I_xz );
- // f.set_Pilot_Location( Dx_pilot, Dy_pilot, Dz_pilot );
- f.set_CG_Position( Dx_cg, Dy_cg, Dz_cg );
-
- // Forces
- // f.set_Forces_Body_Total( F_X, F_Y, F_Z );
- // f.set_Forces_Local_Total( F_north, F_east, F_down );
- // f.set_Forces_Aero( F_X_aero, F_Y_aero, F_Z_aero );
- // f.set_Forces_Engine( F_X_engine, F_Y_engine, F_Z_engine );
- // f.set_Forces_Gear( F_X_gear, F_Y_gear, F_Z_gear );
-
- // Moments
- // f.set_Moments_Total_RP( M_l_rp, M_m_rp, M_n_rp );
- // f.set_Moments_Total_CG( M_l_cg, M_m_cg, M_n_cg );
- // f.set_Moments_Aero( M_l_aero, M_m_aero, M_n_aero );
- // f.set_Moments_Engine( M_l_engine, M_m_engine, M_n_engine );
- // f.set_Moments_Gear( M_l_gear, M_m_gear, M_n_gear );
-
- // Accelerations
- // f.set_Accels_Local( V_dot_north, V_dot_east, V_dot_down );
- // f.set_Accels_Body( U_dot_body, V_dot_body, W_dot_body );
- // f.set_Accels_CG_Body( A_X_cg, A_Y_cg, A_Z_cg );
- // f.set_Accels_Pilot_Body( A_X_pilot, A_Y_pilot, A_Z_pilot );
- // f.set_Accels_CG_Body_N( N_X_cg, N_Y_cg, N_Z_cg );
- // f.set_Accels_Pilot_Body_N( N_X_pilot, N_Y_pilot, N_Z_pilot );
- // f.set_Accels_Omega( P_dot_body, Q_dot_body, R_dot_body );
-
- // Velocities
- f.set_Velocities_Local( V_north, V_east, V_down );
- // f.set_Velocities_Ground( V_north_rel_ground, V_east_rel_ground,
- // V_down_rel_ground );
- // f.set_Velocities_Local_Airmass( V_north_airmass, V_east_airmass,
- // V_down_airmass );
- // f.set_Velocities_Local_Rel_Airmass( V_north_rel_airmass,
- // V_east_rel_airmass, V_down_rel_airmass );
- // f.set_Velocities_Gust( U_gust, V_gust, W_gust );
- // f.set_Velocities_Wind_Body( U_body, V_body, W_body );
-
- // f.set_V_rel_wind( V_rel_wind );
- // f.set_V_true_kts( V_true_kts );
- // f.set_V_rel_ground( V_rel_ground );
- // f.set_V_inertial( V_inertial );
- // f.set_V_ground_speed( V_ground_speed );
- // f.set_V_equiv( V_equiv );
- f.set_V_equiv_kts( V_equiv_kts );
- // f.set_V_calibrated( V_calibrated );
- // f.set_V_calibrated_kts( V_calibrated_kts );
-
- f.set_Omega_Body( P_body, Q_body, R_body );
- // f.set_Omega_Local( P_local, Q_local, R_local );
- // f.set_Omega_Total( P_total, Q_total, R_total );
-
- // f.set_Euler_Rates( Phi_dot, Theta_dot, Psi_dot );
- f.set_Geocentric_Rates( Latitude_dot, Longitude_dot, Radius_dot );
-
- FG_LOG( FG_FLIGHT, FG_DEBUG, "lon = " << Longitude
- << " lat_geoc = " << Lat_geocentric << " lat_geod = " << Latitude
- << " alt = " << Altitude << " sl_radius = " << Sea_level_radius
- << " radius_to_vehicle = " << Radius_to_vehicle );
-
- // Positions
- f.set_Geocentric_Position( Lat_geocentric, Lon_geocentric,
- Radius_to_vehicle );
- f.set_Geodetic_Position( Latitude, Longitude, Altitude );
- f.set_Euler_Angles( Phi, Theta, Psi );
-
- // Miscellaneous quantities
- f.set_T_Local_to_Body(T_local_to_body_m);
- // f.set_Gravity( Gravity );
- // f.set_Centrifugal_relief( Centrifugal_relief );
-
- f.set_Alpha( Alpha );
- f.set_Beta( Beta );
- // f.set_Alpha_dot( Alpha_dot );
- // f.set_Beta_dot( Beta_dot );
-
- // f.set_Cos_alpha( Cos_alpha );
- // f.set_Sin_alpha( Sin_alpha );
- // f.set_Cos_beta( Cos_beta );
- // f.set_Sin_beta( Sin_beta );
-
- // f.set_Cos_phi( Cos_phi );
- // f.set_Sin_phi( Sin_phi );
- // f.set_Cos_theta( Cos_theta );
- // f.set_Sin_theta( Sin_theta );
- // f.set_Cos_psi( Cos_psi );
- // f.set_Sin_psi( Sin_psi );
-
- f.set_Gamma_vert_rad( Gamma_vert_rad );
- // f.set_Gamma_horiz_rad( Gamma_horiz_rad );
-
- // f.set_Sigma( Sigma );
- // f.set_Density( Density );
- // f.set_V_sound( V_sound );
- // f.set_Mach_number( Mach_number );
-
- // f.set_Static_pressure( Static_pressure );
- // f.set_Total_pressure( Total_pressure );
- // f.set_Impact_pressure( Impact_pressure );
- // f.set_Dynamic_pressure( Dynamic_pressure );
-
- // f.set_Static_temperature( Static_temperature );
- // f.set_Total_temperature( Total_temperature );
-
- f.set_Sea_level_radius( Sea_level_radius );
- f.set_Earth_position_angle( Earth_position_angle );
-
- f.set_Runway_altitude( Runway_altitude );
- // f.set_Runway_latitude( Runway_latitude );
- // f.set_Runway_longitude( Runway_longitude );
- // f.set_Runway_heading( Runway_heading );
- // f.set_Radius_to_rwy( Radius_to_rwy );
-
- // f.set_CG_Rwy_Local( D_cg_north_of_rwy, D_cg_east_of_rwy, D_cg_above_rwy);
- // f.set_CG_Rwy_Rwy( X_cg_rwy, Y_cg_rwy, H_cg_rwy );
- // f.set_Pilot_Rwy_Local( D_pilot_north_of_rwy, D_pilot_east_of_rwy,
- // D_pilot_above_rwy );
- // f.set_Pilot_Rwy_Rwy( X_pilot_rwy, Y_pilot_rwy, H_pilot_rwy );
-
- f.set_sin_lat_geocentric(Lat_geocentric);
- f.set_cos_lat_geocentric(Lat_geocentric);
- f.set_sin_cos_longitude(Longitude);
- f.set_sin_cos_latitude(Latitude);
-
- // printf("sin_lat_geo %f cos_lat_geo %f\n", sin_Lat_geoc, cos_Lat_geoc);
- // printf("sin_lat %f cos_lat %f\n",
- // f.get_sin_latitude(), f.get_cos_latitude());
- // printf("sin_lon %f cos_lon %f\n",
- // f.get_sin_longitude(), f.get_cos_longitude());
-
- return 0;
-} */