+++ /dev/null
-// Module: 10520c.c
-// Author: Phil Schubert
-// Date started: 12/03/99
-// Purpose: Models a Continental IO-520-M Engine
-// Called by: FGSimExec
-//
-// Copyright (C) 1999 Philip L. Schubert (philings@ozemail.com.au)
-//
-// This program is free software; you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of the
-// License, or (at your option) any later version.
-//
-// This program is distributed in the hope that it will be useful, but
-// WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// General Public License for more details.
-//
-// You should have received a copy of the GNU General Public License
-// along with this program; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
-// 02111-1307, USA.
-//
-// Further information about the GNU General Public License can also
-// be found on the world wide web at http://www.gnu.org.
-//
-// FUNCTIONAL DESCRIPTION
-// ------------------------------------------------------------------------
-// Models a Continental IO-520-M engine. This engine is used in Cessna
-// 210, 310, Beechcraft Bonaza and Baron C55. The equations used below
-// were determined by a first and second order curve fits using Excel.
-// The data is from the Cessna Aircraft Corporations Engine and Flight
-// Computer for C310. Part Number D3500-13
-//
-// ARGUMENTS
-// ------------------------------------------------------------------------
-//
-//
-// HISTORY
-// ------------------------------------------------------------------------
-// 12/03/99 PLS Created
-// 07/03/99 PLS Added Calculation of Density, and Prop_Torque
-// 07/03/99 PLS Restructered Variables to allow easier implementation
-// of Classes
-// 15/03/99 PLS Added Oil Pressure, Oil Temperature and CH Temp
-// ------------------------------------------------------------------------
-// INCLUDES
-// ------------------------------------------------------------------------
-
-#include <simgear/compiler.h>
-
-#include <iostream>
-#include <math.h>
-
-#include "10520d.hxx"
-
-SG_USING_STD(cout);
-SG_USING_STD(endl);
-
-// ------------------------------------------------------------------------
-// CODE
-// ------------------------------------------------------------------------
-
-
-// Calculate Engine RPM based on Propellor Lever Position
-float FGEngine::Calc_Engine_RPM (float LeverPosition)
-{
- // Calculate RPM as set by Prop Lever Position. Assumes engine
- // will run at 1000 RPM at full course
-
- float RPM = LeverPosition * (Max_RPM - Min_RPM) /100 + Min_RPM ;
-
- if ( RPM >= Max_RPM ) {
- RPM = Max_RPM;
- }
-
- return RPM;
-}
-
-
-// Calculate Manifold Pressure based on Throttle lever Position
-static float Calc_Manifold_Pressure ( float LeverPosn, float MaxMan)
-{
- float Inches;
- // if ( x < = 0 ) {
- // x = 0.00001;
- // }
- Inches = LeverPosn * MaxMan / 100;
- return Inches;
-}
-
-
-// set initial default values
-void FGEngine::init() {
- // Control and environment inputs
- IAS = 0;
- Throttle_Lever_Pos = 75;
- Propeller_Lever_Pos = 75;
- Mixture_Lever_Pos = 100;
-
- // Engine Specific Variables used by this program that have limits.
- // Will be set in a parameter file to be read in to create
- // and instance for each engine.
- Max_Manifold_Pressure = 29.50;
- Max_RPM = 2700;
- Min_RPM = 1000;
- Max_Fuel_Flow = 130;
- Mag_Derate_Percent = 5;
- MaxHP = 285;
- Gear_Ratio = 1;
-
- // Initialise Engine Variables used by this instance
- Percentage_Power = 0;
- Manifold_Pressure = 29.00; // Inches
- RPM = 500;
- Fuel_Flow = 0; // lbs/hour
- Torque = 0;
- CHT = 370;
- Mixture = 14;
- Oil_Pressure = 0; // PSI
- Oil_Temp = 85; // Deg C
- HP = 0;
- RPS = 0;
- Torque_Imbalance = 0;
- Desired_RPM = 0;
-
- // Initialise Propellor Variables used by this instance
- FGProp1_Angular_V = 0;
- FGProp1_Coef_Drag = 0.6;
- FGProp1_Torque = 0;
- FGProp1_Thrust = 0;
- FGProp1_RPS = 0;
- FGProp1_Coef_Lift = 0.1;
- Alpha1 = 13.5;
- FGProp1_Blade_Angle = 13.5;
- FGProp_Fine_Pitch_Stop = 13.5;
- FGProp_Course_Pitch_Stop = 55;
-
- // Other internal values
- Rho = 0.002378;
-}
-
-
-// Calculate Oil Pressure
-static float Oil_Press (float Oil_Temp, float Engine_RPM)
-{
- float Oil_Pressure = 0; //PSI
- float Oil_Press_Relief_Valve = 60; //PSI
- float Oil_Press_RPM_Max = 1800;
- float Design_Oil_Temp = 85; //Celsius
- float Oil_Viscosity_Index = 0.25; // PSI/Deg C
- float Temp_Deviation = 0; // Deg C
-
- Oil_Pressure = (Oil_Press_Relief_Valve / Oil_Press_RPM_Max) * Engine_RPM;
-
- // Pressure relief valve opens at Oil_Press_Relief_Valve PSI setting
- if (Oil_Pressure >= Oil_Press_Relief_Valve)
- {
- Oil_Pressure = Oil_Press_Relief_Valve;
- }
-
- // Now adjust pressure according to Temp which affects the viscosity
-
- Oil_Pressure += (Design_Oil_Temp - Oil_Temp) * Oil_Viscosity_Index;
-
- return Oil_Pressure;
-}
-
-
-// Calculate Cylinder Head Temperature
-static float Calc_CHT (float Fuel_Flow, float Mixture, float IAS)
-{
- float CHT = 350;
-
- return CHT;
-}
-
-
-// Calculate Density Ratio
-static float Density_Ratio ( float x )
-{
- float y = ((3E-10 * x * x) - (3E-05 * x) + 0.9998);
- return y;
-}
-
-
-// Calculate Air Density - Rho
-static float Density ( float x )
-{
- float y = ((9E-08 * x * x) - (7E-08 * x) + 0.0024);
- return y;
-}
-
-
-// Calculate Speed in FPS given Knots CAS
-static float IAS_to_FPS (float ias)
-{
- return ias * 1.68888888;
-}
-
-
-// update the engine model based on current control positions
-void FGEngine::update() {
- // Declare local variables
- int num = 0; // Not used. Counting variables
- int num2 = 100; // Not used.
- float ManXRPM = 0;
- float Vo = 0;
- float V1 = 0;
-
- // Set up the new variables
- float Blade_Station = 30;
- float Rho = 0.002378;
- float FGProp_Area = 1.405/3;
- float PI = 3.1428571;
-
- // Input Variables
- // float IAS = 0;
-
- // 0 = Closed, 100 = Fully Open
- // float Throttle_Lever_Pos = 75;
- // 0 = Full Course 100 = Full Fine
- // float Propeller_Lever_Pos = 75;
- // 0 = Idle Cut Off 100 = Full Rich
- // float Mixture_Lever_Pos = 100;
-
- // Environmental Variables
-
- // Temp Variation from ISA (Deg F)
- float FG_ISA_VAR = 0;
- // Pressure Altitude 1000's of Feet
- float FG_Pressure_Ht = 0;
-
- // Parameters that alter the operation of the engine.
- // Yes = 1. Is there Fuel Available. Calculated elsewhere
- int Fuel_Available = 1;
- // Off = 0. Reduces power by 3 % for same throttle setting
- int Alternate_Air_Pos =0;
- // 1 = On. Reduces power by 5 % for same power lever settings
- int Magneto_Left = 1;
- // 1 = On. Ditto, Both of the above though do not alter fuel flow
- int Magneto_Right = 1;
-
- // There needs to be a section in here to trap silly values, like
- // 0, otherwise they will crash the calculations
-
- // cout << " Number of Iterations ";
- // cin >> num2;
- // cout << endl;
-
- // cout << " Throttle % ";
- // cin >> Throttle_Lever_Pos;
- // cout << endl;
-
- // cout << " Prop % ";
- // cin >> Propeller_Lever_Pos;
- // cout << endl;
-
- //==================================================================
- // Engine & Environmental Inputs from elsewhere
-
- // Calculate Air Density (Rho) - In FG this is calculated in
- // FG_Atomoshere.cxx
-
- Rho = Density(FG_Pressure_Ht); // In FG FG_Pressure_Ht is "h"
- // cout << "Rho = " << Rho << endl;
-
- // Calculate Manifold Pressure (Engine 1) as set by throttle opening
-
- Manifold_Pressure =
- Calc_Manifold_Pressure( Throttle_Lever_Pos, Max_Manifold_Pressure );
- cout << "manifold pressure = " << Manifold_Pressure << endl;
-
-
- RPM = Calc_Engine_RPM(Propeller_Lever_Pos);
- // cout << "Engine RPM = " << RPM << endl;
-
- Desired_RPM = RPM;
- cout << "Desired RPM = " << Desired_RPM << endl;
-
- //==================================================================
- // Engine Power & Torque Calculations
-
- // Loop until stable - required for testing only
- for (num = 0; num < num2; num++) {
- // cout << endl << "====================" << endl;
- // cout << "MP Inches = " << Manifold_Pressure << "\t";
- // cout << " RPM = " << RPM << "\t";
-
- // For a given Manifold Pressure and RPM calculate the % Power
- // Multiply Manifold Pressure by RPM
- ManXRPM = Manifold_Pressure * RPM;
- // cout << ManXRPM << endl;
-
- // Calculate % Power
- Percentage_Power = (+ 7E-09 * ManXRPM * ManXRPM)
- + ( + 7E-04 * ManXRPM) - 0.1218;
- // cout << "percent power = " << Percentage_Power << "%" << "\t";
-
- // Adjust for Temperature - Temperature above Standard decrease
- // power % by 7/120 per degree F increase, and incease power for
- // temps below at the same ratio
- Percentage_Power = Percentage_Power - (FG_ISA_VAR * 7 /120);
- // cout << " adjusted T = " << Percentage_Power << "%" << "\t";
-
- // Adjust for Altitude. In this version a linear variation is
- // used. Decrease 1% for each 1000' increase in Altitde
- Percentage_Power = Percentage_Power + (FG_Pressure_Ht * 12/10000);
- // cout << " adjusted A = " << Percentage_Power << "%" << "\t";
-
- // Now Calculate Fuel Flow based on % Power Best Power Mixture
- Fuel_Flow = Percentage_Power * Max_Fuel_Flow / 100.0;
- // cout << Fuel_Flow << " lbs/hr"<< endl;
-
- // Now Derate engine for the effects of Bad/Switched off magnetos
- if (Magneto_Left == 0 && Magneto_Right == 0) {
- // cout << "Both OFF\n";
- Percentage_Power = 0;
- } else if (Magneto_Left && Magneto_Right) {
- // cout << "Both On ";
- } else if (Magneto_Left == 0 || Magneto_Right== 0) {
- // cout << "1 Magneto Failed ";
-
- Percentage_Power = Percentage_Power *
- ((100.0 - Mag_Derate_Percent)/100.0);
- }
- // cout << "Final engine % power = " << Percentage_Power << "%" << endl;
-
- // Calculate Engine Horsepower
-
- HP = Percentage_Power * MaxHP / 100.0;
-
- // Calculate Engine Torque
-
- Torque = HP * 5252 / RPM;
- // cout << Torque << "Ft/lbs" << "\t";
-
- // Calculate Cylinder Head Temperature
- CHT = Calc_CHT( Fuel_Flow, Mixture, IAS);
- // cout << "Cylinder Head Temp (F) = " << CHT << endl;
-
- // Calculate Oil Pressure
- Oil_Pressure = Oil_Press( Oil_Temp, RPM );
- // cout << "Oil Pressure (PSI) = " << Oil_Pressure << endl;
-
- //==============================================================
-
- // Now do the Propellor Calculations
-
- // Revs per second
- FGProp1_RPS = RPM * Gear_Ratio / 60.0;
- // cout << FGProp1_RPS << " RPS" << endl;
-
- //Radial Flow Vector (V2) Ft/sec at Ref Blade Station (usually 30")
- FGProp1_Angular_V = FGProp1_RPS * 2 * PI * (Blade_Station / 12);
- // cout << "Angular Velocity " << FGProp1_Angular_V << endl;
-
- // Axial Flow Vector (Vo) Ft/sec
- // Some further work required here to allow for inflow at low speeds
- // Vo = (IAS + 20) * 1.688888;
- Vo = IAS_to_FPS(IAS + 20);
- // cout << "Feet/sec = " << Vo << endl;
-
- // cout << Vo << "Axial Velocity" << endl;
-
- // Relative Velocity (V1)
- V1 = sqrt((FGProp1_Angular_V * FGProp1_Angular_V) +
- (Vo * Vo));
- // cout << "Relative Velocity " << V1 << endl;
-
- if ( FGProp1_Blade_Angle >= FGProp_Course_Pitch_Stop ) {
- FGProp1_Blade_Angle = FGProp_Course_Pitch_Stop;
- }
-
- // cout << FGProp1_Blade_Angle << " Prop Blade Angle" << endl;
-
- // Blade Angle of Attack (Alpha1)
-
- Alpha1 = FGProp1_Blade_Angle -(atan(Vo / FGProp1_Angular_V) * (180/PI));
- // cout << Alpha1 << " Alpha1" << endl;
-
- // cout << " Alpha1 = " << Alpha1
- // << " Blade angle = " << FGProp1_Blade_Angle
- // << " Vo = " << Vo
- // << " FGProp1_Angular_V = " << FGProp1_Angular_V << endl;
-
- // Calculate Coefficient of Drag at Alpha1
- FGProp1_Coef_Drag = (0.0005 * (Alpha1 * Alpha1)) + (0.0003 * Alpha1)
- + 0.0094;
- // cout << FGProp1_Coef_Drag << " Coef Drag" << endl;
-
- // Calculate Coefficient of Lift at Alpha1
- FGProp1_Coef_Lift = -(0.0026 * (Alpha1 * Alpha1)) + (0.1027 * Alpha1)
- + 0.2295;
- // cout << FGProp1_Coef_Lift << " Coef Lift " << endl;
-
- // Covert Alplha1 to Radians
- // Alpha1 = Alpha1 * PI / 180;
-
- // Calculate Prop Torque
- FGProp1_Torque = (0.5 * Rho * (V1 * V1) * FGProp_Area
- * ((FGProp1_Coef_Lift * sin(Alpha1 * PI / 180))
- + (FGProp1_Coef_Drag * cos(Alpha1 * PI / 180))))
- * (Blade_Station/12);
- // cout << "Prop Torque = " << FGProp1_Torque << endl;
-
- // Calculate Prop Thrust
- // cout << " V1 = " << V1 << " Alpha1 = " << Alpha1 << endl;
- FGProp1_Thrust = 0.5 * Rho * (V1 * V1) * FGProp_Area
- * ((FGProp1_Coef_Lift * cos(Alpha1 * PI / 180))
- - (FGProp1_Coef_Drag * sin(Alpha1 * PI / 180)));
- // cout << " Prop Thrust = " << FGProp1_Thrust << endl;
-
- // End of Propeller Calculations
- //==============================================================
-
-
-
- Torque_Imbalance = FGProp1_Torque - Torque;
- // cout << Torque_Imbalance << endl;
-
- if (Torque_Imbalance > 20) {
- RPM -= 14.5;
- // FGProp1_RPM -= 25;
- FGProp1_Blade_Angle -= 0.75;
- }
-
- if (FGProp1_Blade_Angle < FGProp_Fine_Pitch_Stop) {
- FGProp1_Blade_Angle = FGProp_Fine_Pitch_Stop;
- }
- if (Torque_Imbalance < -20) {
- RPM += 14.5;
- // FGProp1_RPM += 25;
- FGProp1_Blade_Angle += 0.75;
- }
-
- if (RPM >= 2700) {
- RPM = 2700;
- }
-
-
- // cout << FGEng1_RPM << " Blade_Angle " << FGProp1_Blade_Angle << endl << endl;
-
- }
-}
-
-
-
-
-// Functions
-
-// Calculate Oil Temperature
-
-static float Oil_Temp (float Fuel_Flow, float Mixture, float IAS)
-{
- float Oil_Temp = 85;
-
- return (Oil_Temp);
-}
+++ /dev/null
-// Module: 10520c.c
-// Author: Phil Schubert
-// Date started: 12/03/99
-// Purpose: Models a Continental IO-520-M Engine
-// Called by: FGSimExec
-//
-// Copyright (C) 1999 Philip L. Schubert (philings@ozemail.com.au)
-//
-// This program is free software; you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of the
-// License, or (at your option) any later version.
-//
-// This program is distributed in the hope that it will be useful, but
-// WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// General Public License for more details.
-//
-// You should have received a copy of the GNU General Public License
-// along with this program; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
-// 02111-1307, USA.
-//
-// Further information about the GNU General Public License can also
-// be found on the world wide web at http://www.gnu.org.
-//
-// FUNCTIONAL DESCRIPTION
-// ------------------------------------------------------------------------
-// Models a Continental IO-520-M engine. This engine is used in Cessna
-// 210, 310, Beechcraft Bonaza and Baron C55. The equations used below
-// were determined by a first and second order curve fits using Excel.
-// The data is from the Cessna Aircraft Corporations Engine and Flight
-// Computer for C310. Part Number D3500-13
-//
-// ARGUMENTS
-// ------------------------------------------------------------------------
-//
-//
-// HISTORY
-// ------------------------------------------------------------------------
-// 12/03/99 PLS Created
-// 07/03/99 PLS Added Calculation of Density, and Prop_Torque
-// 07/03/99 PLS Restructered Variables to allow easier implementation
-// of Classes
-// 15/03/99 PLS Added Oil Pressure, Oil Temperature and CH Temp
-// ------------------------------------------------------------------------
-// INCLUDES
-// ------------------------------------------------------------------------
-
-#ifndef _10520D_HXX_
-#define _10520D_HXX_
-
-
-#include <iostream>
-#include <math.h>
-
-
-class FGEngine {
-
-private:
-
- // Control and environment inputs
- float IAS;
- // 0 = Closed, 100 = Fully Open
- float Throttle_Lever_Pos;
- // 0 = Full Course 100 = Full Fine
- float Propeller_Lever_Pos;
- // 0 = Idle Cut Off 100 = Full Rich
- float Mixture_Lever_Pos;
-
- // Engine Specific Variables used by this program that have limits.
- // Will be set in a parameter file to be read in to create
- // and instance for each engine.
- float Max_Manifold_Pressure;
- float Max_RPM;
- float Min_RPM;
- float Max_Fuel_Flow;
- float Mag_Derate_Percent;
- float MaxHP;
- float Gear_Ratio;
-
- // Initialise Engine Variables used by this instance
- float Percentage_Power;
- float Manifold_Pressure; // Inches
- float RPM;
- float Fuel_Flow; // lbs/hour
- float Torque;
- float CHT;
- float Mixture;
- float Oil_Pressure; // PSI
- float Oil_Temp; // Deg C
- float HP;
- float RPS;
- float Torque_Imbalance;
- float Desired_RPM;
-
- // Initialise Propellor Variables used by this instance
- float FGProp1_Angular_V;
- float FGProp1_Coef_Drag;
- float FGProp1_Torque;
- float FGProp1_Thrust;
- float FGProp1_RPS;
- float FGProp1_Coef_Lift;
- float Alpha1;
- float FGProp1_Blade_Angle;
- float FGProp_Fine_Pitch_Stop;
- float FGProp_Course_Pitch_Stop;
-
- // Other internal values
- float Rho;
-
- // Calculate Engine RPM based on Propellor Lever Position
- float Calc_Engine_RPM (float Position);
-
-public:
-
- // set initial default values
- void init();
-
- // update the engine model based on current control positions
- void update();
-
- inline void set_IAS( float value ) { IAS = value; }
- inline void set_Throttle_Lever_Pos( float value ) {
- Throttle_Lever_Pos = value;
- }
- inline void set_Propeller_Lever_Pos( float value ) {
- Propeller_Lever_Pos = value;
- }
- inline void set_Mixture_Lever_Pos( float value ) {
- Mixture_Lever_Pos = value;
- }
-
- // accessors
- inline float get_RPM() const { return RPM; }
- inline float get_FGProp1_Thrust() const { return FGProp1_Thrust; }
-
- inline float get_Rho() const { return Rho; }
-};
-
-
-#endif // _10520D_HXX_
# noinst_PROGRAMS = testJSBsim
-# testJSBsim_SOURCES = JSBSim.dcpp
-
-# testJSBsim_LDADD = libJSBSim.a filtersjb/libfiltersjb.a
-
-# demo_SOURCES = demo.cxx
-
-# demo_LDADD = libJSBSim.a filtersjb/libfiltersjb.a
-
if OLD_AUTOMAKE
INCLUDES += -I$(top_srcdir) -I$(top_srcdir)/src
DEFS += -DFGFS
MagicCarpet.cxx MagicCarpet.hxx \
NullFDM.cxx NullFDM.hxx
-bin_PROGRAMS = pstest
-
-pstest_SOURCES = ps-10520c.cxx
-
if OLD_AUTOMAKE
INCLUDES += -I$(top_srcdir) -I$(top_srcdir)/src
else
+++ /dev/null
-// Module: 10520c.c
-// Author: Phil Schubert
-// Date started: 12/03/99
-// Purpose: Models a Continental IO-520-M Engine
-// Called by: FGSimExec
-//
-// Copyright (C) 1999 Philip L. Schubert (philip@zedley.com)
-//
-// This program is free software; you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of the
-// License, or (at your option) any later version.
-//
-// This program is distributed in the hope that it will be useful, but
-// WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-// General Public License for more details.
-//
-// You should have received a copy of the GNU General Public License
-// along with this program; if not, write to the Free Software
-// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
-// 02111-1307, USA.
-//
-// Further information about the GNU General Public License can also
-// be found on the world wide web at http://www.gnu.org.
-//
-// FUNCTIONAL DESCRIPTION
-// ------------------------------------------------------------------------
-// Models a Continental IO-520-M engine. This engine is used in Cessna
-// 210, 310, Beechcraft Bonaza and Baron C55. The equations used below
-// were determined by a first and second order curve fits using Excel.
-// The data is from the Cessna Aircraft Corporations Engine and Flight
-// Computer for C310. Part Number D3500-13
-//
-// ARGUMENTS
-// ------------------------------------------------------------------------
-//
-//
-// HISTORY
-// ------------------------------------------------------------------------
-// 12/03/99 PLS Created
-// 07/03/99 PLS Added Calculation of Density, and Prop_Torque
-// 07/03/99 PLS Restructered Variables to allow easier implementation
-// of Classes
-// 15/03/99 PLS Added Oil Pressure
-// 19/8/2000 PLS Updated E-mail address - This version compiles
-// 19/8/2000 PLS Set Max Prop blade angle to prevent prop exeeding 90
-// ------------------------------------------------------------------------
-// INCLUDES
-// ------------------------------------------------------------------------
-
-#include <simgear/compiler.h>
-
-#include <math.h>
-
-#include STL_IOSTREAM
-
-#if !defined(SG_HAVE_NATIVE_SGI_COMPILERS)
-SG_USING_STD(cout);
-SG_USING_STD(endl);
-#endif
-
-// ------------------------------------------------------------------------
-// CODE
-// ------------------------------------------------------------------------
-
-// prototype definitions
-// These should be in a header file 10520c.h
-
-float Density (float x);
-void ShowRho (float x);
-
-float IAS_to_FPS (float x);
-void ShowFPS(float x);
-
-float Get_Throttle (float x);
-void Show_Throttle (float x);
-
-float Manifold_Pressure (float x, float z);
-void Show_Manifold_Pressure (float x);
-
-float CHT (float Fuel_Flow, float Mixture, float IAS);
-void Show_CHT (float x);
-
-float Oil_Temp (float x, float y);
-void Show_Oil_Temp (float x);
-
-float Oil_Press (float Oil_Temp, float Engine_RPM);
-void Show_Oil_Press (float x);
-
-int main()
-
-{
- // Declare local variables
- int num = 0; // Not used. Counting variables
- int num2 = 100; // Not used.
- float ManXRPM = 0;
- float Vo = 0;
- float V1 = 0;
-
-
- // Set up the new variables
- float Blade_Station = 30;
- float Rho = 0.002378;
- float FGProp_Area = 1.405/3;
- float PI = 3.1428571;
-
- // Input Variables
- float IAS = 0;
- cout << "Enter IAS ";
- // cin >> IAS;
- IAS = 85;
- cout << endl;
-
-
- // 0 = Closed, 100 = Fully Open
- float FGEng1_Throttle_Lever_Pos = 75;
- // 0 = Full Course 100 = Full Fine
- float FGEng1_Propeller_Lever_Pos = 75;
- // 0 = Idle Cut Off 100 = Full Rich
- float FGEng1_Mixture_Lever_Pos = 100;
-
- // Environmental Variables
-
- // Temp Variation from ISA (Deg F)
- float FG_ISA_VAR = 0;
- // Pressure Altitude 1000's of Feet
- float FG_Pressure_Ht = 0;
-
- // Parameters that alter the operation of the engine.
- // Yes = 1. Is there Fuel Available. Calculated elsewhere
- int FGEng1_Fuel_Available = 1;
- // Off = 0. Reduces power by 3 % for same throttle setting
- int FGEng1_Alternate_Air_Pos =0;
- // 1 = On. Reduces power by 5 % for same power lever settings
- int FGEng1_Magneto_Left = 1;
- // 1 = On. Ditto, Both of the above though do not alter fuel flow
- int FGEng1_Magneto_Right = 1;
-
- // There needs to be a section in here to trap silly values, like
- // 0, otherwise they will crash the calculations
-
- // Engine Specific Variables used by this program that have limits.
- // Will be set in a parameter file to be read in to create
- // and instance for each engine.
- float FGEng_Max_Manifold_Pressure = 29.50;
- float FGEng_Max_RPM = 2700;
- float FGEng_Min_RPM = 1000;
- float FGEng_Max_Fuel_Flow = 130;
- float FGEng_Mag_Derate_Percent = 5;
- float FGEng_MaxHP = 285;
- float FGEng_Gear_Ratio = 1;
-
- // Initialise Engine Variables used by this instance
- float FGEng1_Percentage_Power = 0;
- float FGEng1_Manifold_Pressure = 29.00; // Inches
- float FGEng1_RPM = 500;
- float FGEng1_Fuel_Flow = 0; // lbs/hour
- float FGEng1_Torque = 0;
- float FGEng1_CHT = 370;
- float FGEng1_Mixture = 14;
- float FGEng1_Oil_Pressure = 0; // PSI
- float FGEng1_Oil_Temp = 85; // Deg C
- float FGEng1_HP = 0;
- float FGEng1_RPS = 0;
- float Torque_Imbalance = 0;
- float FGEng1_Desired_RPM = 0;
-
- // Initialise Propellor Variables used by this instance
- float FGProp1_Angular_V = 0;
- float FGProp1_Coef_Drag = 0.6;
- float FGProp1_Torque = 0;
- float FGProp1_Thrust = 0;
- float FGProp1_RPS = 0;
- float FGProp1_Coef_Lift = 0.1;
- float Alpha1 = 13.5;
- float FGProp1_Blade_Angle = 13.5;
- float FGProp_Fine_Pitch_Stop = 13.5;
- float FGProp_Course_Pitch_Stop = 55;
-
- // cout << "Enter Blade Angle ";
- // cin >> FGProp1_Blade_Angle;
- // cout << endl;
-
- cout << " Number of Iterations ";
- // cin >> num2;
- num2 = 100;
- cout << endl;
-
- cout << " Throttle % ";
- // cin >> FGEng1_Throttle_Lever_Pos;
- FGEng1_Throttle_Lever_Pos = 50;
- cout << endl;
-
- cout << " Prop % ";
- // cin >> FGEng1_Propeller_Lever_Pos;
- FGEng1_Propeller_Lever_Pos = 100;
- cout << endl;
-
- //==================================================================
- // Engine & Environmental Inputs from elsewhere
-
- // Calculate Air Density (Rho) - In FG this is calculated in
- // FG_Atomoshere.cxx
-
- Rho = Density(FG_Pressure_Ht); // In FG FG_Pressure_Ht is "h"
- ShowRho(Rho);
-
-
- // Calculate Manifold Pressure (Engine 1) as set by throttle opening
-
- FGEng1_Manifold_Pressure = Manifold_Pressure(FGEng1_Throttle_Lever_Pos,
- FGEng1_Manifold_Pressure );
- Show_Manifold_Pressure(FGEng1_Manifold_Pressure);
-
- // Calculate Desired RPM as set by Prop Lever Position.
- // Actual engine RPM may be different
- // The governed max RPM at 100% Prop Lever Position = FGEng_MaxRPM
- // The governed minimum RPM at 0% Prop Lever Position = FGEng_Min_RPM
- // The actual minimum RPM of the engine can be < FGEng_Min_RPM if there is insufficient
- // engine torque to counter act the propeller torque at FGProp_Fine_Pitch_Stop
-
- FGEng1_RPM = (FGEng1_Propeller_Lever_Pos * (FGEng_Max_RPM - FGEng_Min_RPM) /100)
- + FGEng_Min_RPM ;
-
- // * ((FGEng_Max_RPM + FGEng_Min_RPM) / 100);
-
- if (FGEng1_RPM >= 2700) {
- FGEng1_RPM = 2700;
- }
- FGEng1_Desired_RPM = FGEng1_RPM;
-
- cout << "Desired RPM = " << FGEng1_Desired_RPM << endl;
-
- //==================================================================
- // Engine Power & Torque Calculations
-
- // Loop until stable - required for testing only
- for (num = 1; num < num2; num++) {
- cout << endl << "====================" << endl;
- cout << "MP Inches = " << FGEng1_Manifold_Pressure << "\t";
- cout << FGEng1_RPM << " RPM" << "\t";
-
- // For a givem Manifold Pressure and RPM calculate the % Power
- // Multiply Manifold Pressure by RPM
- ManXRPM = FGEng1_Manifold_Pressure * FGEng1_RPM;
- cout << ManXRPM << endl;
-
- // Calculate % Power
- FGEng1_Percentage_Power = (+ 7E-09 * ManXRPM * ManXRPM)
- + ( + 7E-04 * ManXRPM) - 0.1218;
- cout << "percent power = " << FGEng1_Percentage_Power << "%" << "\t";
-
- // Adjust for Temperature - Temperature above Standard decrease
- // power % by 7/120 per degree F increase, and incease power for
- // temps below at the same ratio
- FGEng1_Percentage_Power = FGEng1_Percentage_Power - (FG_ISA_VAR * 7 /120);
- cout << " adjusted T = " << FGEng1_Percentage_Power << "%" << "\t";
-
- // Adjust for Altitude. In this version a linear variation is
- // used. Decrease 1% for each 1000' increase in Altitde
- FGEng1_Percentage_Power = FGEng1_Percentage_Power
- + (FG_Pressure_Ht * 12/10000);
- cout << " adjusted A = " << FGEng1_Percentage_Power << "%" << "\t";
-
- // Now Calculate Fuel Flow based on % Power Best Power Mixture
- FGEng1_Fuel_Flow = FGEng1_Percentage_Power
- * FGEng_Max_Fuel_Flow / 100;
- // cout << FGEng1_Fuel_Flow << " lbs/hr"<< endl;
-
- // Now Derate engine for the effects of Bad/Switched off magnetos
- if (FGEng1_Magneto_Left == 0 && FGEng1_Magneto_Right == 0) {
- // cout << "Both OFF\n";
- FGEng1_Percentage_Power = 0;
- } else if (FGEng1_Magneto_Left && FGEng1_Magneto_Right) {
- // cout << "Both On ";
- } else if (FGEng1_Magneto_Left == 0 || FGEng1_Magneto_Right== 0) {
- // cout << "1 Magneto Failed ";
-
- FGEng1_Percentage_Power = FGEng1_Percentage_Power *
- ((100 - FGEng_Mag_Derate_Percent)/100);
- // cout << FGEng1_Percentage_Power << "%" << "\t";
- }
-
- // Calculate Engine Horsepower
-
- FGEng1_HP = FGEng1_Percentage_Power * FGEng_MaxHP/100;
-
- // Calculate Engine Torque
-
- FGEng1_Torque = FGEng1_HP * 5252 / FGEng1_RPM;
- cout << FGEng1_Torque << "Ft/lbs" << "\t";
-
- // Calculate Cylinder Head Temperature
- FGEng1_CHT = CHT (FGEng1_Fuel_Flow, FGEng1_Mixture, IAS);
- // Show_CHT (FGEng1_CHT);
-
- // Calculate Oil Pressure
- FGEng1_Oil_Pressure = Oil_Press (FGEng1_Oil_Temp, FGEng1_RPM);
- // Show_Oil_Press(FGEng1_Oil_Pressure);
-
-
- //==============================================================
-
- // Now do the Propellor Calculations
-
- // Revs per second
- FGProp1_RPS = FGEng1_RPM * FGEng_Gear_Ratio/60;
- // cout << FGProp1_RPS << " RPS" << endl;
-
- //Radial Flow Vector (V2) Ft/sec at Ref Blade Station (usually 30")
- FGProp1_Angular_V = FGProp1_RPS * 2 * PI * (Blade_Station / 12);
- cout << "Angular Velocity " << FGProp1_Angular_V << endl;
-
- // Axial Flow Vector (Vo) Ft/sec
- // Some further work required here to allow for inflow at low speeds
- // Vo = (IAS + 20) * 1.688888;
- Vo = IAS_to_FPS(IAS + 20);
- // ShowFPS ( Vo );
-
- // cout << Vo << "Axial Velocity" << endl;
-
- // Relative Velocity (V1)
- V1 = sqrt((FGProp1_Angular_V * FGProp1_Angular_V) +
- (Vo * Vo));
- cout << "Relative Velocity " << V1 << endl;
-
- if ( FGProp1_Blade_Angle >= FGProp_Course_Pitch_Stop ) {
- FGProp1_Blade_Angle = FGProp_Course_Pitch_Stop;
- }
-
- cout << FGProp1_Blade_Angle << " Prop Blade Angle" << endl;
-
- // Blade Angle of Attack (Alpha1)
-
- Alpha1 = FGProp1_Blade_Angle -(atan(Vo / FGProp1_Angular_V) * (180/PI));
- // cout << Alpha1 << " Alpha1" << endl;
-
- cout << " Alpha1 = " << Alpha1
- << " Blade angle = " << FGProp1_Blade_Angle
- << " Vo = " << Vo
- << " FGProp1_Angular_V = " << FGProp1_Angular_V << endl;
-
- // Calculate Coefficient of Drag at Alpha1
- FGProp1_Coef_Drag = (0.0005 * (Alpha1 * Alpha1)) + (0.0003 * Alpha1)
- + 0.0094;
- // cout << FGProp1_Coef_Drag << " Coef Drag" << endl;
-
- // Calculate Coefficient of Lift at Alpha1
- FGProp1_Coef_Lift = -(0.0026 * (Alpha1 * Alpha1)) + (0.1027 * Alpha1)
- + 0.2295;
- // cout << FGProp1_Coef_Lift << " Coef Lift " << endl;
-
- // Covert Alplha1 to Radians
- // Alpha1 = Alpha1 * PI / 180;
-
- // Calculate Prop Torque
- FGProp1_Torque = (0.5 * Rho * (V1 * V1) * FGProp_Area
- * ((FGProp1_Coef_Lift * sin(Alpha1 * PI / 180))
- + (FGProp1_Coef_Drag * cos(Alpha1 * PI / 180))))
- * (Blade_Station/12);
- cout << "Prop Torque = " << FGProp1_Torque << endl;
-
- // Calculate Prop Thrust
- FGProp1_Thrust = 0.5 * Rho * (V1 * V1) * FGProp_Area
- * ((FGProp1_Coef_Lift * cos(Alpha1 * PI / 180))
- - (FGProp1_Coef_Drag * sin(Alpha1 * PI / 180)));
- cout << " Prop Thrust = " << FGProp1_Thrust << endl;
-
- // End of Propeller Calculations
- //==============================================================
-
-
-
- Torque_Imbalance = FGProp1_Torque - FGEng1_Torque;
- // cout << Torque_Imbalance << endl;
-
- if (Torque_Imbalance > 20) {
- FGEng1_RPM -= 14.5;
- // FGProp1_RPM -= 25;
- FGProp1_Blade_Angle -= 0.75;
- }
-
- if (FGProp1_Blade_Angle < FGProp_Fine_Pitch_Stop) {
- FGProp1_Blade_Angle = FGProp_Fine_Pitch_Stop;
- }
- if (Torque_Imbalance < -20) {
- FGEng1_RPM += 14.5;
- // FGProp1_RPM += 25;
- FGProp1_Blade_Angle += 0.75;
- }
-
- if (FGEng1_RPM >= 2700) {
- FGEng1_RPM = 2700;
- }
-
-
- // cout << FGEng1_RPM << " Blade_Angle " << FGProp1_Blade_Angle << endl << endl;
-
- }
-
-
- return (0);
-}
-
-
-
-
-// Functions
-
-// Calculate Air Density - Rho
-float Density ( float x )
-{
- float y ;
- y = ((9E-08 * x * x) - (7E-08 * x) + 0.0024);
- return(y);
-}
-
-// Show Air Density Calculations
-void ShowRho (float x)
-{
- cout << "Rho = ";
- cout << x << endl;
-}
-
-
-
-
-
-// Calculate Speed in FPS given Knots CAS
-float IAS_to_FPS (float x)
-{
- float y;
- y = x * 1.68888888;
- return (y);
-}
-
-// Show Feet per Second
-void ShowFPS (float x)
-{
- cout << "Feet/sec = ";
- cout << x << endl;
-}
-
-
-
-// Calculate Manifold Pressure based on Throttle lever Position
-
-float Manifold_Pressure ( float x, float z)
-{
- float y;
- // if ( x < = 0 )
- // {
- // x = 0.00001;
- // }
- y = x * z / 100;
- return (y);
-}
-
-// Show Manifold Pressure
-void Show_Manifold_Pressure (float x)
-{
- cout << "Manifold Pressure = ";
- cout << x << endl;
-}
-
-// Calculate Oil Temperature
-
-float Oil_Temp (float Fuel_Flow, float Mixture, float IAS)
-{
- float Oil_Temp = 85;
-
- return (Oil_Temp);
-}
-
-// Show Oil Temperature
-
-void Show_Oil_Temp (float x)
-{
- cout << "Oil Temperature (F) = ";
- cout << x << endl;
-}
-
-
-// Calculate Oil Pressure
-
-float Oil_Press (float Oil_Temp, float Engine_RPM)
-{
- float Oil_Pressure = 0; //PSI
- float Oil_Press_Relief_Valve = 60; //PSI
- float Oil_Press_RPM_Max = 1800;
- float Design_Oil_Temp = 85; //Celsius
- float Oil_Viscosity_Index = 0.25; // PSI/Deg C
- float Temp_Deviation = 0; // Deg C
-
- Oil_Pressure = (Oil_Press_Relief_Valve / Oil_Press_RPM_Max) * Engine_RPM;
-
- // Pressure relief valve opens at Oil_Press_Relief_Valve PSI setting
- if (Oil_Pressure >= Oil_Press_Relief_Valve)
- {
- Oil_Pressure = Oil_Press_Relief_Valve;
- }
-
- // Now adjust pressure according to Temp which affects the viscosity
-
- Oil_Pressure += (Design_Oil_Temp - Oil_Temp) * Oil_Viscosity_Index;
-
- return (Oil_Pressure);
-}
-
-// Show Oil Pressure
-void Show_Oil_Press (float x)
-{
- cout << "Oil Pressure (PSI) = ";
- cout << x << endl;
-}
-
-
-
-// Calculate Cylinder Head Temperature
-
-float CHT (float Fuel_Flow, float Mixture, float IAS)
-{
- float CHT = 350;
-
- return (CHT);
-}
-
-// Show Cyl Head Temperature
-
-void Show_CHT (float x)
-{
- cout << "CHT (F) = ";
- cout << x << endl;
-}