#include <simgear/math/point3d.hxx>
#include <simgear/constants.h>
#include <plib/sg.h>
-#include <iomanip.h>
+//#include <iomanip.h>
#include "ATCutils.hxx"
-// Convert a 2 digit rwy number to a spoken-style string
-string convertNumToSpokenString(int n) {
- string nums[10] = {"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"};
- // Basic error/sanity checking
- while(n < 0) {
- n += 36;
- }
- while(n > 36) {
- n -= 36;
- }
- if(n == 0) {
- n = 36; // Is this right?
- }
+// Convert any number to spoken digits
+string ConvertNumToSpokenDigits(string n) {
+ //cout << "n = " << n << endl;
+ string nums[10] = {"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"};
+ string pt = "decimal";
+ string str = "";
+
+ for(unsigned int i=0; i<n.length(); ++i) {
+ //cout << "n.substr(" << i << ",1 = " << n.substr(i,1) << endl;
+ if(n.substr(i,1) == " ") {
+ // do nothing
+ } else if(n.substr(i,1) == ".") {
+ str += pt;
+ } else {
+ str += nums[atoi((n.substr(i,1)).c_str())];
+ }
+ if(i != (n.length()-1)) { // ie. don't add a space at the end.
+ str += " ";
+ }
+ }
+
+ return(str);
+}
- string str = "";
- int index = n/10;
- str += nums[index];
- n -= (index * 10);
- str += "-";
- str += nums[n];
- return(str);
+// Convert a 2 digit rwy number to a spoken-style string
+string ConvertRwyNumToSpokenString(int n) {
+ string nums[10] = {"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"};
+ // Basic error/sanity checking
+ while(n < 0) {
+ n += 36;
+ }
+ while(n > 36) {
+ n -= 36;
+ }
+ if(n == 0) {
+ n = 36; // Is this right?
+ }
+
+ string str = "";
+ int index = n/10;
+ str += nums[index];
+ n -= (index * 10);
+ //str += "-";
+ str += " "; //Changed this for the benefit of the voice token parser - prefer the "-" in the visual output though.
+ str += nums[n];
+ return(str);
}
// Return the phonetic letter of a letter represented as an integer 1->26
string GetPhoneticIdent(int i) {
-// TODO - Check i is between 1 and 26 and wrap if necessary
- switch(i) {
- case 1 : return("Alpha");
- case 2 : return("Bravo");
- case 3 : return("Charlie");
- case 4 : return("Delta");
- case 5 : return("Echo");
- case 6 : return("Foxtrot");
- case 7 : return("Golf");
- case 8 : return("Hotel");
- case 9 : return("Indigo");
- case 10 : return("Juliet");
- case 11 : return("Kilo");
- case 12 : return("Lima");
- case 13 : return("Mike");
- case 14 : return("November");
- case 15 : return("Oscar");
- case 16 : return("Papa");
- case 17 : return("Quebec");
- case 18 : return("Romeo");
- case 19 : return("Sierra");
- case 20 : return("Tango");
- case 21 : return("Uniform");
- case 22 : return("Victor");
- case 23 : return("Whiskey");
- case 24 : return("X-ray");
- case 25 : return("Yankee");
- case 26 : return("Zulu");
- }
- // We shouldn't get here
- return("Error");
+ // TODO - Check i is between 1 and 26 and wrap if necessary
+ switch(i) {
+ case 1 : return("alpha");
+ case 2 : return("bravo");
+ case 3 : return("charlie");
+ case 4 : return("delta");
+ case 5 : return("echo");
+ case 6 : return("foxtrot");
+ case 7 : return("golf");
+ case 8 : return("hotel");
+ case 9 : return("india");
+ case 10 : return("juliet");
+ case 11 : return("kilo");
+ case 12 : return("lima");
+ case 13 : return("mike");
+ case 14 : return("november");
+ case 15 : return("oscar");
+ case 16 : return("papa");
+ case 17 : return("quebec");
+ case 18 : return("romeo");
+ case 19 : return("sierra");
+ case 20 : return("tango");
+ case 21 : return("uniform");
+ case 22 : return("victor");
+ case 23 : return("whiskey");
+ case 24 : return("x-ray");
+ case 25 : return("yankee");
+ case 26 : return("zulu");
+ }
+ // We shouldn't get here
+ return("Error");
}
-// Given two positions, get the HORIZONTAL separation (in meters)
+// Given two positions (lat & lon in degrees), get the HORIZONTAL separation (in meters)
double dclGetHorizontalSeparation(Point3D pos1, Point3D pos2) {
- double x; //East-West separation
- double y; //North-South separation
- double z; //Horizontal separation - z = sqrt(x^2 + y^2)
-
- double lat1 = pos1.lat() * SG_DEGREES_TO_RADIANS;
- double lon1 = pos1.lon() * SG_DEGREES_TO_RADIANS;
- double lat2 = pos2.lat() * SG_DEGREES_TO_RADIANS;
- double lon2 = pos2.lon() * SG_DEGREES_TO_RADIANS;
-
- y = sin(fabs(lat1 - lat2)) * SG_EQUATORIAL_RADIUS_M;
- x = sin(fabs(lon1 - lon2)) * SG_EQUATORIAL_RADIUS_M * (cos((lat1 + lat2) / 2.0));
- z = sqrt(x*x + y*y);
-
- return(z);
+ double x; //East-West separation
+ double y; //North-South separation
+ double z; //Horizontal separation - z = sqrt(x^2 + y^2)
+
+ double lat1 = pos1.lat() * SG_DEGREES_TO_RADIANS;
+ double lon1 = pos1.lon() * SG_DEGREES_TO_RADIANS;
+ double lat2 = pos2.lat() * SG_DEGREES_TO_RADIANS;
+ double lon2 = pos2.lon() * SG_DEGREES_TO_RADIANS;
+
+ y = sin(fabs(lat1 - lat2)) * SG_EQUATORIAL_RADIUS_M;
+ x = sin(fabs(lon1 - lon2)) * SG_EQUATORIAL_RADIUS_M * (cos((lat1 + lat2) / 2.0));
+ z = sqrt(x*x + y*y);
+
+ return(z);
}
// Given a point and a line, get the HORIZONTAL shortest distance from the point to a point on the line.
// Expects to be fed orthogonal co-ordinates, NOT lat & lon !
+// The units of the separation will be those of the input.
double dclGetLinePointSeparation(double px, double py, double x1, double y1, double x2, double y2) {
- double vecx = x2-x1;
- double vecy = y2-y1;
- double magline = sqrt(vecx*vecx + vecy*vecy);
- double u = ((px-x1)*(x2-x1) + (py-y1)*(y2-y1)) / (magline * magline);
- double x0 = x1 + u*(x2-x1);
- double y0 = y1 + u*(y2-y1);
- vecx = px - x0;
- vecy = py - y0;
- double d = sqrt(vecx*vecx + vecy*vecy);
- if(d < 0) {
- d *= -1;
- }
- return(d);
+ double vecx = x2-x1;
+ double vecy = y2-y1;
+ double magline = sqrt(vecx*vecx + vecy*vecy);
+ double u = ((px-x1)*(x2-x1) + (py-y1)*(y2-y1)) / (magline * magline);
+ double x0 = x1 + u*(x2-x1);
+ double y0 = y1 + u*(y2-y1);
+ vecx = px - x0;
+ vecy = py - y0;
+ double d = sqrt(vecx*vecx + vecy*vecy);
+ if(d < 0) {
+ d *= -1;
+ }
+ return(d);
}
-// Given a position (lat/lon/elev), heading, vertical angle, and distance, calculate the new position.
-// Assumes that the ground is not hit!!! Expects heading and angle in degrees, distance in meters.
+// Given a position (lat/lon/elev), heading and vertical angle (degrees), and distance (meters), calculate the new position.
+// This function assumes the world is spherical. If geodetic accuracy is required use the functions is sg_geodesy instead!
+// Assumes that the ground is not hit!!! Expects heading and angle in degrees, distance in meters.
Point3D dclUpdatePosition(Point3D pos, double heading, double angle, double distance) {
- //cout << setprecision(10) << pos.lon() << ' ' << pos.lat() << '\n';
- heading *= DCL_DEGREES_TO_RADIANS;
- angle *= DCL_DEGREES_TO_RADIANS;
- double lat = pos.lat() * DCL_DEGREES_TO_RADIANS;
- double lon = pos.lon() * DCL_DEGREES_TO_RADIANS;
- double elev = pos.elev();
- //cout << setprecision(10) << lon*DCL_RADIANS_TO_DEGREES << ' ' << lat*DCL_RADIANS_TO_DEGREES << '\n';
-
- double horiz_dist = distance * cos(angle);
- double vert_dist = distance * sin(angle);
-
- double north_dist = horiz_dist * cos(heading);
- double east_dist = horiz_dist * sin(heading);
-
- //cout << distance << ' ' << horiz_dist << ' ' << vert_dist << ' ' << north_dist << ' ' << east_dist << '\n';
-
- double delta_lat = asin(north_dist / (double)SG_EQUATORIAL_RADIUS_M);
- double delta_lon = asin(east_dist / (double)SG_EQUATORIAL_RADIUS_M) * (1.0 / cos(lat)); // I suppose really we should use the average of the original and new lat but we'll assume that this will be good enough.
- //cout << delta_lon*DCL_RADIANS_TO_DEGREES << ' ' << delta_lat*DCL_RADIANS_TO_DEGREES << '\n';
- lat += delta_lat;
- lon += delta_lon;
- elev += vert_dist;
- //cout << setprecision(10) << lon*DCL_RADIANS_TO_DEGREES << ' ' << lat*DCL_RADIANS_TO_DEGREES << '\n';
-
- //cout << setprecision(15) << DCL_DEGREES_TO_RADIANS * DCL_RADIANS_TO_DEGREES << '\n';
-
- return(Point3D(lon*DCL_RADIANS_TO_DEGREES, lat*DCL_RADIANS_TO_DEGREES, elev));
+ //cout << setprecision(10) << pos.lon() << ' ' << pos.lat() << '\n';
+ heading *= DCL_DEGREES_TO_RADIANS;
+ angle *= DCL_DEGREES_TO_RADIANS;
+ double lat = pos.lat() * DCL_DEGREES_TO_RADIANS;
+ double lon = pos.lon() * DCL_DEGREES_TO_RADIANS;
+ double elev = pos.elev();
+ //cout << setprecision(10) << lon*DCL_RADIANS_TO_DEGREES << ' ' << lat*DCL_RADIANS_TO_DEGREES << '\n';
+
+ double horiz_dist = distance * cos(angle);
+ double vert_dist = distance * sin(angle);
+
+ double north_dist = horiz_dist * cos(heading);
+ double east_dist = horiz_dist * sin(heading);
+
+ //cout << distance << ' ' << horiz_dist << ' ' << vert_dist << ' ' << north_dist << ' ' << east_dist << '\n';
+
+ double delta_lat = asin(north_dist / (double)SG_EQUATORIAL_RADIUS_M);
+ double delta_lon = asin(east_dist / (double)SG_EQUATORIAL_RADIUS_M) * (1.0 / cos(lat)); // I suppose really we should use the average of the original and new lat but we'll assume that this will be good enough.
+ //cout << delta_lon*DCL_RADIANS_TO_DEGREES << ' ' << delta_lat*DCL_RADIANS_TO_DEGREES << '\n';
+ lat += delta_lat;
+ lon += delta_lon;
+ elev += vert_dist;
+ //cout << setprecision(10) << lon*DCL_RADIANS_TO_DEGREES << ' ' << lat*DCL_RADIANS_TO_DEGREES << '\n';
+
+ //cout << setprecision(15) << DCL_DEGREES_TO_RADIANS * DCL_RADIANS_TO_DEGREES << '\n';
+
+ return(Point3D(lon*DCL_RADIANS_TO_DEGREES, lat*DCL_RADIANS_TO_DEGREES, elev));
}
-
-#if 0
-/* Determine location in runway coordinates */
-
- Radius_to_rwy = Sea_level_radius + Runway_altitude;
- cos_rwy_hdg = cos(Runway_heading*DEG_TO_RAD);
- sin_rwy_hdg = sin(Runway_heading*DEG_TO_RAD);
-
- D_cg_north_of_rwy = Radius_to_rwy*(Latitude - Runway_latitude);
- D_cg_east_of_rwy = Radius_to_rwy*cos(Runway_latitude)
- *(Longitude - Runway_longitude);
- D_cg_above_rwy = Radius_to_vehicle - Radius_to_rwy;
+// Get a heading in degrees from one lat/lon to another.
+// This function assumes the world is spherical. If geodetic accuracy is required use the functions is sg_geodesy instead!
+// Warning - at the moment we are not checking for identical points - currently it returns 90 in this instance.
+double GetHeadingFromTo(Point3D A, Point3D B) {
+ double latA = A.lat() * DCL_DEGREES_TO_RADIANS;
+ double lonA = A.lon() * DCL_DEGREES_TO_RADIANS;
+ double latB = B.lat() * DCL_DEGREES_TO_RADIANS;
+ double lonB = B.lon() * DCL_DEGREES_TO_RADIANS;
+ double xdist = sin(lonB - lonA) * (double)SG_EQUATORIAL_RADIUS_M * cos((latA+latB)/2.0);
+ double ydist = sin(latB - latA) * (double)SG_EQUATORIAL_RADIUS_M;
- X_cg_rwy = D_cg_north_of_rwy*cos_rwy_hdg
- + D_cg_east_of_rwy*sin_rwy_hdg;
- Y_cg_rwy =-D_cg_north_of_rwy*sin_rwy_hdg
- + D_cg_east_of_rwy*cos_rwy_hdg;
- H_cg_rwy = D_cg_above_rwy;
-#endif
+ if(xdist >= 0) {
+ if(ydist > 0) {
+ return(atan(xdist/ydist) * DCL_RADIANS_TO_DEGREES);
+ } else if (ydist == 0) {
+ return(90.0);
+ } else {
+ return(180.0 - atan(xdist/fabs(ydist)) * DCL_RADIANS_TO_DEGREES);
+ }
+ } else {
+ if(ydist > 0) {
+ return(360.0 - atan(fabs(xdist)/ydist) * DCL_RADIANS_TO_DEGREES);
+ } else if (ydist == 0) {
+ return(270.0);
+ } else {
+ return(180.0 + atan(xdist/ydist) * DCL_RADIANS_TO_DEGREES);
+ }
+ }
+}
+
+// Given a heading (in degrees), bound it from 0 -> 360
+void dclBoundHeading(double &hdg) {
+ while(hdg < 0.0) {
+ hdg += 360.0;
+ }
+ while(hdg > 360.0) {
+ hdg -= 360.0;
+ }
+}