closestPoint(const SGVec3<T>& p, const SGTriangle<T>& tri)
{ return closestPoint(tri, p); }
-template<typename T>
+template<typename T, typename T2>
inline bool
-intersects(const SGTriangle<T>& tri, const SGSphere<T>& sphere)
+intersects(const SGTriangle<T>& tri, const SGSphere<T2>& sphere)
{
// This method minimizes the distance function Q(u, v) = || p - x ||
// where x is a point in the trialgle given by the vertices v_i
// The theoretical analysis is somehow too long for a comment.
// May be it is sufficient to see that this code passes all the tests.
- SGVec3<T> off = tri.getBaseVertex() - sphere.getCenter();
+ SGVec3<T> off = tri.getBaseVertex() - SGVec3<T>(sphere.getCenter());
T baseDist2 = dot(off, off);
T a = dot(tri.getEdge(0), tri.getEdge(0));
T b = dot(tri.getEdge(0), tri.getEdge(1));
}
}
}
-template<typename T>
+template<typename T1, typename T2>
inline bool
-intersects(const SGSphere<T>& sphere, const SGTriangle<T>& tri)
+intersects(const SGSphere<T1>& sphere, const SGTriangle<T2>& tri)
{ return intersects(tri, sphere); }