--- /dev/null
+// Module: 10520c.c
+// Author: Phil Schubert
+// Date started: 12/03/99
+// Purpose: Models a Continental IO-520-M Engine
+// Called by: FGSimExec
+//
+// Copyright (C) 1999 Philip L. Schubert (philings@ozemail.com.au)
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
+// 02111-1307, USA.
+//
+// Further information about the GNU General Public License can also
+// be found on the world wide web at http://www.gnu.org.
+//
+// FUNCTIONAL DESCRIPTION
+// ------------------------------------------------------------------------
+// Models a Continental IO-520-M engine. This engine is used in Cessna
+// 210, 310, Beechcraft Bonaza and Baron C55. The equations used below
+// were determined by a first and second order curve fits using Excel.
+// The data is from the Cessna Aircraft Corporations Engine and Flight
+// Computer for C310. Part Number D3500-13
+//
+// ARGUMENTS
+// ------------------------------------------------------------------------
+//
+//
+// HISTORY
+// ------------------------------------------------------------------------
+// 12/03/99 PLS Created
+// 07/03/99 PLS Added Calculation of Density, and Prop_Torque
+// 07/03/99 PLS Restructered Variables to allow easier implementation
+// of Classes
+// 15/03/99 PLS Added Oil Pressure, Oil Temperature and CH Temp
+// ------------------------------------------------------------------------
+// INCLUDES
+// ------------------------------------------------------------------------
+//
+//
+/////////////////////////////////////////////////////////////////////
+//
+// Modified by Dave Luff (david.luff@nottingham.ac.uk) September 2000
+//
+// Altered manifold pressure range to add a minimum value at idle to simulate the throttle stop / idle bypass valve,
+// and to reduce the maximum value whilst the engine is running to slightly below ambient to account for CdA losses across the throttle
+//
+// Altered it a bit to model an IO360 from C172 - 360 cubic inches, 180 HP max, fixed pitch prop
+// Added a simple fixed pitch prop model by Nev Harbor - this is not intended as a final model but simply a hack to get it running for now
+// I used Phil's ManXRPM correlation for power rather than do a new one for the C172 for now, but altered it a bit to reduce power at the low end
+//
+// Added EGT model based on combustion efficiency and an energy balance with the exhaust gases
+//
+// Added a mixture - power correlation based on a curve in the IO360 operating manual
+//
+// I've tried to match the prop and engine model to give roughly 600 RPM idle and 180 HP at 2700 RPM
+// but it is by no means currently at a completed stage - DCL 15/9/00
+//
+//////////////////////////////////////////////////////////////////////
+
+#include <iostream.h>
+#include <fstream.h>
+#include <math.h>
+
+#include "IO360.hxx"
+
+
+// ------------------------------------------------------------------------
+// CODE
+// ------------------------------------------------------------------------
+
+
+// Calculate Engine RPM based on Propellor Lever Position
+float FGEngine::Calc_Engine_RPM (float LeverPosition)
+{
+ // Calculate RPM as set by Prop Lever Position. Assumes engine
+ // will run at 1000 RPM at full course
+
+ float RPM;
+ RPM = LeverPosition * Max_RPM / 100.0;
+ // * ((FGEng_Max_RPM + FGEng_Min_RPM) / 100);
+
+ if ( RPM >= Max_RPM ) {
+ RPM = Max_RPM;
+ }
+
+ return RPM;
+}
+
+float FGEngine::Lookup_Combustion_Efficiency(float thi_actual)
+{
+ float thi[11]; //array of equivalence ratio values
+ float neta_comb[11]; //corresponding array of combustion efficiency values
+ float neta_comb_actual;
+ float factor;
+
+ //thi = (0.0,0.9,1.0,1.05,1.1,1.15,1.2,1.3,1.4,1.5,1.6);
+ thi[0] = 0.0;
+ thi[1] = 0.9;
+ thi[2] = 1.0;
+ thi[3] = 1.05; //There must be an easier way of doing this !!!!!!!!
+ thi[4] = 1.1;
+ thi[5] = 1.15;
+ thi[6] = 1.2;
+ thi[7] = 1.3;
+ thi[8] = 1.4;
+ thi[9] = 1.5;
+ thi[10] = 1.6;
+ //neta_comb = (0.98,0.98,0.97,0.95,0.9,0.85,0.79,0.7,0.63,0.57,0.525);
+ neta_comb[0] = 0.98;
+ neta_comb[1] = 0.98;
+ neta_comb[2] = 0.97;
+ neta_comb[3] = 0.95;
+ neta_comb[4] = 0.9;
+ neta_comb[5] = 0.85;
+ neta_comb[6] = 0.79;
+ neta_comb[7] = 0.7;
+ neta_comb[8] = 0.63;
+ neta_comb[9] = 0.57;
+ neta_comb[10] = 0.525;
+ //combustion efficiency values from Heywood [1]
+
+ int i;
+ int j;
+ j = 11; //This must be equal to the number of elements in the lookup table arrays
+
+ for(i=0;i<j;i++)
+ {
+ if(i == (j-1))
+ {
+ //this is just to avoid crashing the routine is we are bigger than the last element - for now just return the last element
+ //but at some point we will have to extrapolate further
+ neta_comb_actual = neta_comb[i];
+ return neta_comb_actual;
+ }
+ if(thi_actual == thi[i])
+ {
+ neta_comb_actual = neta_comb[i];
+ return neta_comb_actual;
+ }
+ if((thi_actual > thi[i]) && (thi_actual < thi[i + 1]))
+ {
+ //do linear interpolation between the two points
+ factor = (thi_actual - thi[i]) / (thi[i+1] - thi[i]);
+ neta_comb_actual = (factor * (neta_comb[i+1] - neta_comb[i])) + neta_comb[i];
+ return neta_comb_actual;
+ }
+ }
+
+ //if we get here something has gone badly wrong
+ cout << "ERROR: error in FGEngine::Lookup_Combustion_Efficiency\n";
+ //exit(-1);
+ return neta_comb_actual; //keeps the compiler happy
+}
+/*
+float FGEngine::Calculate_Delta_T_Exhaust(void)
+{
+ float dT_exhaust;
+ heat_capacity_exhaust = (Cp_air * m_dot_air) + (Cp_fuel * m_dot_fuel);
+ dT_exhaust = enthalpy_exhaust / heat_capacity_exhaust;
+
+ return(dT_exhaust);
+}
+*/
+
+// Calculate Manifold Pressure based on Throttle lever Position
+static float Calc_Manifold_Pressure ( float LeverPosn, float MaxMan, float MinMan)
+{
+ float Inches;
+ // if ( x < = 0 ) {
+ // x = 0.00001;
+ // }
+
+ //Note that setting the manifold pressure as a function of lever position only is not strictly accurate
+ //MAP is also a function of engine speed.
+ Inches = MinMan + (LeverPosn * (MaxMan - MinMan) / 100);
+
+ //allow for idle bypass valve or slightly open throttle stop
+ if(Inches < MinMan)
+ Inches = MinMan;
+
+ return Inches;
+}
+
+
+// set initial default values
+void FGEngine::init() {
+
+ CONVERT_CUBIC_INCHES_TO_METERS_CUBED = 1.638706e-5;
+ // Control and environment inputs
+ IAS = 0;
+ Throttle_Lever_Pos = 75;
+ Propeller_Lever_Pos = 75;
+ Mixture_Lever_Pos = 100;
+ Cp_air = 1005; // J/KgK
+ Cp_fuel = 1700; // J/KgK
+ calorific_value_fuel = 47.3e6; // W/Kg Note that this is only an approximate value
+ R_air = 287.3;
+
+ // Engine Specific Variables used by this program that have limits.
+ // Will be set in a parameter file to be read in to create
+ // and instance for each engine.
+ Max_Manifold_Pressure = 28.50; //Inches Hg. An approximation - should be able to find it in the engine performance data
+ Min_Manifold_Pressure = 6.5; //Inches Hg. This is a guess corresponding to approx 0.24 bar MAP (7 in Hg) - need to find some proper data for this
+ Max_RPM = 2700;
+ Min_RPM = 600; //Recommended idle from Continental data sheet
+ Max_Fuel_Flow = 130;
+ Mag_Derate_Percent = 5;
+// MaxHP = 285; //Continental IO520-M
+ MaxHP = 180; //Lycoming IO360
+// displacement = 520; //Continental IO520-M
+ displacement = 360; //Lycoming IO360
+ displacement_SI = displacement * CONVERT_CUBIC_INCHES_TO_METERS_CUBED;
+
+ Gear_Ratio = 1;
+ started = true;
+ cranking = false;
+
+ CONVERT_HP_TO_WATTS = 745.6999;
+// ofstream outfile;
+ // outfile.open(ios::out|ios::trunc);
+
+ // Initialise Engine Variables used by this instance
+ Percentage_Power = 0;
+ Manifold_Pressure = 29.00; // Inches
+ RPM = 600;
+ Fuel_Flow = 0; // lbs/hour
+ Torque = 0;
+ CHT = 370;
+ Mixture = 14;
+ Oil_Pressure = 0; // PSI
+ Oil_Temp = 85; // Deg C
+ HP = 0;
+ RPS = 0;
+ Torque_Imbalance = 0;
+ Desired_RPM = 2500; //Recommended cruise RPM from Continental datasheet
+
+ // Initialise Propellor Variables used by this instance
+ FGProp1_Angular_V = 0;
+ FGProp1_Coef_Drag = 0.6;
+ FGProp1_Torque = 0;
+ FGProp1_Thrust = 0;
+ FGProp1_RPS = 0;
+ FGProp1_Coef_Lift = 0.1;
+ Alpha1 = 13.5;
+ FGProp1_Blade_Angle = 13.5;
+ FGProp_Fine_Pitch_Stop = 13.5;
+
+ // Other internal values
+ Rho = 0.002378;
+}
+
+
+// Calculate Oil Pressure
+static float Oil_Press (float Oil_Temp, float Engine_RPM)
+{
+ float Oil_Pressure = 0; //PSI
+ float Oil_Press_Relief_Valve = 60; //PSI
+ float Oil_Press_RPM_Max = 1800;
+ float Design_Oil_Temp = 85; //Celsius
+ float Oil_Viscosity_Index = 0.25; // PSI/Deg C
+ float Temp_Deviation = 0; // Deg C
+
+ Oil_Pressure = (Oil_Press_Relief_Valve / Oil_Press_RPM_Max) * Engine_RPM;
+
+ // Pressure relief valve opens at Oil_Press_Relief_Valve PSI setting
+ if (Oil_Pressure >= Oil_Press_Relief_Valve)
+ {
+ Oil_Pressure = Oil_Press_Relief_Valve;
+ }
+
+ // Now adjust pressure according to Temp which affects the viscosity
+
+ Oil_Pressure += (Design_Oil_Temp - Oil_Temp) * Oil_Viscosity_Index;
+
+ return Oil_Pressure;
+}
+
+
+// Calculate Cylinder Head Temperature
+static float Calc_CHT (float Fuel_Flow, float Mixture, float IAS)
+{
+ float CHT = 350;
+
+ return CHT;
+}
+
+/*
+//Calculate Exhaust Gas Temperature
+//For now we will simply adjust this as a function of mixture
+//It may be necessary to consider fuel flow rates and CHT in the calculation in the future
+static float Calc_EGT (float Mixture)
+{
+ float EGT = 1000; //off the top of my head !!!!
+ //Now adjust for mixture strength
+
+ return EGT;
+}*/
+
+
+// Calculate Density Ratio
+static float Density_Ratio ( float x )
+{
+ float y ;
+ y = ((3E-10 * x * x) - (3E-05 * x) + 0.9998);
+ return(y);
+}
+
+
+// Calculate Air Density - Rho
+static float Density ( float x )
+{
+ float y ;
+ y = ((9E-08 * x * x) - (7E-08 * x) + 0.0024);
+ return(y);
+}
+
+
+// Calculate Speed in FPS given Knots CAS
+static float IAS_to_FPS (float x)
+{
+ float y;
+ y = x * 1.68888888;
+ return y;
+}
+
+
+// update the engine model based on current control positions
+void FGEngine::update() {
+ // Declare local variables
+ int num = 0;
+ // const int num2 = 500; // default is 100, number if iterations to run
+ const int num2 = 5; // default is 100, number if iterations to run
+ float ManXRPM = 0;
+ float Vo = 0;
+ float V1 = 0;
+
+
+ // Set up the new variables
+ float Blade_Station = 30;
+ float FGProp_Area = 1.405/3;
+ float PI = 3.1428571;
+
+ // Input Variables
+
+ // 0 = Closed, 100 = Fully Open
+ // float Throttle_Lever_Pos = 75;
+ // 0 = Full Course 100 = Full Fine
+ // float Propeller_Lever_Pos = 75;
+ // 0 = Idle Cut Off 100 = Full Rich
+ // float Mixture_Lever_Pos = 100;
+
+ // Environmental Variables
+
+ // Temp Variation from ISA (Deg F)
+ float FG_ISA_VAR = 0;
+ // Pressure Altitude 1000's of Feet
+ float FG_Pressure_Ht = 0;
+
+ // Parameters that alter the operation of the engine.
+ // Yes = 1. Is there Fuel Available. Calculated elsewhere
+ int Fuel_Available = 1;
+ // Off = 0. Reduces power by 3 % for same throttle setting
+ int Alternate_Air_Pos =0;
+ // 1 = On. Reduces power by 5 % for same power lever settings
+ int Magneto_Left = 1;
+ // 1 = On. Ditto, Both of the above though do not alter fuel flow
+ int Magneto_Right = 1;
+
+ // There needs to be a section in here to trap silly values, like
+ // 0, otherwise they will crash the calculations
+
+ // cout << " Number of Iterations ";
+ // cin >> num2;
+ // cout << endl;
+
+ // cout << " Throttle % ";
+ // cin >> Throttle_Lever_Pos;
+ // cout << endl;
+
+ // cout << " Prop % ";
+ // cin >> Propeller_Lever_Pos;
+ // cout << endl;
+
+ //==================================================================
+ // Engine & Environmental Inputs from elsewhere
+
+ // Calculate Air Density (Rho) - In FG this is calculated in
+ // FG_Atomoshere.cxx
+
+ Rho = Density(FG_Pressure_Ht); // In FG FG_Pressure_Ht is "h"
+ // cout << "Rho = " << Rho << endl;
+
+ // Calculate Manifold Pressure (Engine 1) as set by throttle opening
+
+ Manifold_Pressure =
+ Calc_Manifold_Pressure( Throttle_Lever_Pos, Max_Manifold_Pressure, Min_Manifold_Pressure );
+ // cout << "manifold pressure = " << Manifold_Pressure << endl;
+
+ //DCL - hack for testing - fly at sea level
+ T_amb = 298.0;
+ p_amb = 101325;
+ p_amb_sea_level = 101325;
+
+ //DCL - next calculate m_dot_air and m_dot_fuel into engine
+
+ //calculate actual ambient pressure and temperature from altitude
+ //Then find the actual manifold pressure (the calculated one is the sea level pressure)
+ True_Manifold_Pressure = Manifold_Pressure * p_amb / p_amb_sea_level;
+
+ // RPM = Calc_Engine_RPM(Propeller_Lever_Pos);
+ // RPM = 600;
+ // cout << "Initial engine RPM = " << RPM << endl;
+
+// Desired_RPM = RPM;
+
+//**************
+
+ //DCL - calculate mass air flow into engine based on speed and load - separate this out into a function eventually
+ //t_amb is actual temperature calculated from altitude
+ //calculate density from ideal gas equation
+ rho_air = p_amb / ( R_air * T_amb );
+ rho_air_manifold = rho_air * Manifold_Pressure / 29.6;
+ //calculate ideal engine volume inducted per second
+ swept_volume = (displacement_SI * (RPM / 60)) / 2; //This equation is only valid for a four stroke engine
+ //calculate volumetric efficiency - for now we will just use 0.8, but actually it is a function of engine speed and the exhaust to manifold pressure ratio
+ volumetric_efficiency = 0.8;
+ //Now use volumetric efficiency to calculate actual air volume inducted per second
+ v_dot_air = swept_volume * volumetric_efficiency;
+ //Now calculate mass flow rate of air into engine
+ m_dot_air = v_dot_air * rho_air_manifold;
+
+ // cout << "rho air manifold " << rho_air_manifold << '\n';
+ // cout << "Swept volume " << swept_volume << '\n';
+
+//**************
+
+ //DCL - now calculate fuel flow into engine based on air flow and mixture lever position
+ //assume lever runs from no flow at fully out to thi = 1.6 at fully in at sea level
+ //also assume that the injector linkage is ideal - hence the set mixture is maintained at a given altitude throughout the speed and load range
+ thi_sea_level = 1.6 * ( Mixture_Lever_Pos / 100.0 );
+ equivalence_ratio = thi_sea_level * p_amb_sea_level / p_amb; //ie as we go higher the mixture gets richer for a given lever position
+ m_dot_fuel = m_dot_air / 14.7 * equivalence_ratio;
+
+ // cout << "fuel " << m_dot_fuel;
+ // cout << " air " << m_dot_air << '\n';
+
+//**************
+
+ // cout << "Thi = " << equivalence_ratio << '\n';
+
+ combustion_efficiency = Lookup_Combustion_Efficiency(equivalence_ratio); //The combustion efficiency basically tells us what proportion of the fuels calorific value is released
+
+ // cout << "Combustion efficiency = " << combustion_efficiency << '\n';
+
+ //now calculate energy release to exhaust
+ //We will assume a three way split of fuel energy between useful work, the coolant system and the exhaust system
+ //This is a reasonable first suck of the thumb estimate for a water cooled automotive engine - whether it holds for an air cooled aero engine is probably open to question
+ //Regardless - it won't affect the variation of EGT with mixture, and we con always put a multiplier on EGT to get a reasonable peak value.
+ enthalpy_exhaust = m_dot_fuel * calorific_value_fuel * combustion_efficiency * 0.33;
+ heat_capacity_exhaust = (Cp_air * m_dot_air) + (Cp_fuel * m_dot_fuel);
+ delta_T_exhaust = enthalpy_exhaust / heat_capacity_exhaust;
+// delta_T_exhaust = Calculate_Delta_T_Exhaust();
+
+ // cout << "T_amb " << T_amb;
+ // cout << " dT exhaust = " << delta_T_exhaust;
+
+ EGT = T_amb + delta_T_exhaust;
+
+ // cout << " EGT = " << EGT << '\n';
+
+
+ // Calculate Manifold Pressure (Engine 2) as set by throttle opening
+
+ // FGEng2_Manifold_Pressure = Manifold_Pressure(FGEng2_Throttle_Lever_Pos, FGEng2_Manifold_Pressure);
+ // Show_Manifold_Pressure(FGEng2_Manifold_Pressure);
+
+
+
+ //==================================================================
+ // Engine Power & Torque Calculations
+
+ // Loop until stable - required for testing only
+ for (num = 0; num < num2; num++) {
+ // cout << Manifold_Pressure << " Inches" << "\t";
+ // cout << RPM << " RPM" << "\t";
+
+ // For a given Manifold Pressure and RPM calculate the % Power
+ // Multiply Manifold Pressure by RPM
+ ManXRPM = Manifold_Pressure * RPM;
+ // cout << ManXRPM;
+ // cout << endl;
+
+// Phil's %power correlation
+/* // Calculate % Power
+ Percentage_Power = (+ 7E-09 * ManXRPM * ManXRPM)
+ + ( + 7E-04 * ManXRPM) - 0.1218;
+ // cout << Percentage_Power << "%" << "\t"; */
+
+// DCL %power correlation - basically Phil's correlation modified to give slighty less power at the low end
+// might need some adjustment as the prop model is adjusted
+// My aim is to match the prop model and engine model at the low end to give the manufacturer's recommended idle speed with the throttle closed - 600rpm for the Continental IO520
+ // Calculate % Power
+ Percentage_Power = (+ 6E-09 * ManXRPM * ManXRPM)
+ + ( + 8E-04 * ManXRPM) - 1.8524;
+ // cout << Percentage_Power << "%" << "\t";
+
+ // Adjust for Temperature - Temperature above Standard decrease
+ // power % by 7/120 per degree F increase, and incease power for
+ // temps below at the same ratio
+ Percentage_Power = Percentage_Power - (FG_ISA_VAR * 7 /120);
+ // cout << Percentage_Power << "%" << "\t";
+
+ // Adjust for Altitude. In this version a linear variation is
+ // used. Decrease 1% for each 1000' increase in Altitde
+ Percentage_Power = Percentage_Power + (FG_Pressure_Ht * 12/10000);
+ // cout << Percentage_Power << "%" << "\t";
+
+ //DCL - now adjust power to compensate for mixture
+ //uses a curve fit to the data in the IO360 / O360 operating manual
+ //due to the shape of the curve I had to use a 6th order fit - I am sure it must be possible to reduce this in future,
+ //possibly by using separate fits for rich and lean of best power mixture
+ //first adjust actual mixture to abstract mixture - this is a temporary hack
+ //y=10x-12 for now
+ abstract_mixture = 10.0 * equivalence_ratio - 12.0;
+ float m = abstract_mixture; //to simplify writing the next equation
+ Percentage_of_best_power_mixture_power = ((-0.0012*m*m*m*m*m*m) + (0.021*m*m*m*m*m) + (-0.1425*m*m*m*m) + (0.4395*m*m*m) + (-0.8909*m*m) + (-0.5155*m) + 100.03);
+ Percentage_Power = Percentage_Power * Percentage_of_best_power_mixture_power / 100.0;
+
+
+ // Now Calculate Fuel Flow based on % Power Best Power Mixture
+ Fuel_Flow = Percentage_Power * Max_Fuel_Flow / 100.0;
+ // cout << Fuel_Flow << " lbs/hr"<< endl;
+
+ // Now Derate engine for the effects of Bad/Switched off magnetos
+ if (Magneto_Left == 0 && Magneto_Right == 0) {
+ // cout << "Both OFF\n";
+ Percentage_Power = 0;
+ } else if (Magneto_Left && Magneto_Right) {
+ // cout << "Both On ";
+ } else if (Magneto_Left == 0 || Magneto_Right== 0) {
+ // cout << "1 Magneto Failed ";
+
+ Percentage_Power = Percentage_Power *
+ ((100.0 - Mag_Derate_Percent)/100.0);
+ // cout << FGEng1_Percentage_Power << "%" << "\t";
+ }
+
+ // Calculate Engine Horsepower
+
+ HP = Percentage_Power * MaxHP / 100.0;
+
+ Power_SI = HP * CONVERT_HP_TO_WATTS;
+
+ // Calculate Engine Torque
+
+ Torque = HP * 5252 / RPM;
+ // cout << Torque << "Ft/lbs" << "\t";
+
+ Torque_SI = (Power_SI * 60.0) / (2.0 * PI * RPM); //Torque = power / angular velocity
+ // cout << Torque << " Nm\n";
+
+ // Calculate Cylinder Head Temperature
+ CHT = Calc_CHT( Fuel_Flow, Mixture, IAS);
+ // cout << "Cylinder Head Temp (F) = " << CHT << endl;
+
+// EGT = Calc_EGT( Mixture );
+
+ // Calculate Oil Pressure
+ Oil_Pressure = Oil_Press( Oil_Temp, RPM );
+ // cout << "Oil Pressure (PSI) = " << Oil_Pressure << endl;
+
+ //==============================================================
+
+ // Now do the Propellor Calculations
+
+#ifdef PHILS_PROP_MODEL
+
+ // Revs per second
+ FGProp1_RPS = RPM * Gear_Ratio / 60.0;
+ // cout << FGProp1_RPS << " RPS" << endl;
+
+ //Radial Flow Vector (V2) Ft/sec at Ref Blade Station (usually 30")
+ FGProp1_Angular_V = FGProp1_RPS * 2 * PI * (Blade_Station / 12);
+ // cout << FGProp1_Angular_V << "Angular Velocity " << endl;
+
+ // Axial Flow Vector (Vo) Ft/sec
+ // Some further work required here to allow for inflow at low speeds
+ // Vo = (IAS + 20) * 1.688888;
+ Vo = IAS_to_FPS(IAS + 20);
+ // cout << "Feet/sec = " << Vo << endl;
+
+ // cout << Vo << "Axial Velocity" << endl;
+
+ // Relative Velocity (V1)
+ V1 = sqrt((FGProp1_Angular_V * FGProp1_Angular_V) +
+ (Vo * Vo));
+ // cout << V1 << "Relative Velocity " << endl;
+
+ // cout << FGProp1_Blade_Angle << " Prop Blade Angle" << endl;
+
+ // Blade Angle of Attack (Alpha1)
+
+/* cout << " Alpha1 = " << Alpha1
+ << " Blade angle = " << FGProp1_Blade_Angle
+ << " Vo = " << Vo
+ << " FGProp1_Angular_V = " << FGProp1_Angular_V << endl;*/
+ Alpha1 = FGProp1_Blade_Angle -(atan(Vo / FGProp1_Angular_V) * (180/PI));
+ // cout << Alpha1 << " Alpha1" << endl;
+
+ // Calculate Coefficient of Drag at Alpha1
+ FGProp1_Coef_Drag = (0.0005 * (Alpha1 * Alpha1)) + (0.0003 * Alpha1)
+ + 0.0094;
+ // cout << FGProp1_Coef_Drag << " Coef Drag" << endl;
+
+ // Calculate Coefficient of Lift at Alpha1
+ FGProp1_Coef_Lift = -(0.0026 * (Alpha1 * Alpha1)) + (0.1027 * Alpha1)
+ + 0.2295;
+ // cout << FGProp1_Coef_Lift << " Coef Lift " << endl;
+
+ // Covert Alplha1 to Radians
+ // Alpha1 = Alpha1 * PI / 180;
+
+ // Calculate Prop Torque
+ FGProp1_Torque = (0.5 * Rho * (V1 * V1) * FGProp_Area
+ * ((FGProp1_Coef_Lift * sin(Alpha1 * PI / 180))
+ + (FGProp1_Coef_Drag * cos(Alpha1 * PI / 180))))
+ * (Blade_Station/12);
+ // cout << FGProp1_Torque << " Prop Torque" << endl;
+
+ // Calculate Prop Thrust
+ // cout << " V1 = " << V1 << " Alpha1 = " << Alpha1 << endl;
+ FGProp1_Thrust = 0.5 * Rho * (V1 * V1) * FGProp_Area
+ * ((FGProp1_Coef_Lift * cos(Alpha1 * PI / 180))
+ - (FGProp1_Coef_Drag * sin(Alpha1 * PI / 180)));
+ // cout << FGProp1_Thrust << " Prop Thrust " << endl;
+
+ // End of Propeller Calculations
+ //==============================================================
+
+#endif //PHILS_PROP_MODEL
+
+#ifdef NEVS_PROP_MODEL
+
+ // Nev's prop model
+
+ num_elements = 6.0;
+ number_of_blades = 2.0;
+ blade_length = 0.95;
+ allowance_for_spinner = blade_length / 12.0;
+ prop_fudge_factor = 1.453401525;
+ forward_velocity = IAS;
+
+ theta[0] = 25.0;
+ theta[1] = 20.0;
+ theta[2] = 15.0;
+ theta[3] = 10.0;
+ theta[4] = 5.0;
+ theta[5] = 0.0;
+
+ angular_velocity_SI = 2.0 * PI * RPM / 60.0;
+
+ allowance_for_spinner = blade_length / 12.0;
+ //Calculate thrust and torque by summing the contributions from each of the blade elements
+ //Assumes equal length elements with numbered 1 inboard -> num_elements outboard
+ prop_torque = 0.0;
+ prop_thrust = 0.0;
+ int i;
+// outfile << "Rho = " << Rho << '\n\n';
+// outfile << "Drag = ";
+ for(i=1;i<=num_elements;i++)
+ {
+ element = float(i);
+ distance = (blade_length * (element / num_elements)) + allowance_for_spinner;
+ element_drag = 0.5 * rho_air * ((distance * angular_velocity_SI)*(distance * angular_velocity_SI)) * (0.000833 * ((theta[int(element-1)] - (atan(forward_velocity/(distance * angular_velocity_SI))))*(theta[int(element-1)] - (atan(forward_velocity/(distance * angular_velocity_SI))))))
+ * (0.1 * (blade_length / element)) * number_of_blades;
+
+ element_lift = 0.5 * rho_air * ((distance * angular_velocity_SI)*(distance * angular_velocity_SI)) * (0.036 * (theta[int(element-1)] - (atan(forward_velocity/(distance * angular_velocity_SI))))+0.4)
+ * (0.1 * (blade_length / element)) * number_of_blades;
+ element_torque = element_drag * distance;
+ prop_torque += element_torque;
+ prop_thrust += element_lift;
+// outfile << "Drag = " << element_drag << " n = " << element << '\n';
+ }
+
+// outfile << '\n';
+
+// outfile << "Angular velocity = " << angular_velocity_SI << " rad/s\n";
+
+ // cout << "Thrust = " << prop_thrust << '\n';
+ prop_thrust *= prop_fudge_factor;
+ prop_torque *= prop_fudge_factor;
+ prop_power_consumed_SI = prop_torque * angular_velocity_SI;
+ prop_power_consumed_HP = prop_power_consumed_SI / 745.699;
+
+
+#endif //NEVS_PROP_MODEL
+
+
+//#if 0
+#ifdef PHILS_PROP_MODEL //Do Torque calculations in Ft/lbs - yuk :-(((
+ Torque_Imbalance = FGProp1_Torque - Torque;
+#endif
+
+#ifdef NEVS_PROP_MODEL //use proper units - Nm
+ Torque_Imbalance = prop_torque - Torque_SI;
+#endif
+
+ // cout << Torque_Imbalance << endl;
+
+// Some really crude engine speed calculations for now - we really need some moments of inertia and a dt in here !!!!
+ if (Torque_Imbalance > 5) {
+ RPM -= 14.5;
+ // FGProp1_RPM -= 25;
+// FGProp1_Blade_Angle -= 0.75;
+ }
+
+ if (Torque_Imbalance < -5) {
+ RPM += 14.5;
+ // FGProp1_RPM += 25;
+// FGProp1_Blade_Angle += 0.75;
+ }
+
+ //DCL - This constant speed prop bit is all a bit of a hack for now
+/*
+ if( RPM > (Desired_RPM + 2)) {
+ FGProp1_Blade_Angle += 0.75; //This value could be altered depending on how far from the desired RPM we are
+ }
+
+ if( RPM < (Desired_RPM - 2)) {
+ FGProp1_Blade_Angle -= 0.75;
+ }
+
+ if (FGProp1_Blade_Angle < FGProp_Fine_Pitch_Stop) {
+ FGProp1_Blade_Angle = FGProp_Fine_Pitch_Stop;
+ }
+
+ if (RPM >= 2700) {
+ RPM = 2700;
+ }
+*/
+ //end constant speed prop
+//#endif
+
+ //DCL - stall the engine if RPM drops below 550 - this is possible if mixture lever is pulled right out
+ if(RPM < 550)
+ RPM = 0;
+
+// outfile << "RPM = " << RPM << " Blade angle = " << FGProp1_Blade_Angle << " Engine torque = " << Torque << " Prop torque = " << FGProp1_Torque << '\n';
+ outfile << "RPM = " << RPM << " Engine torque = " << Torque_SI << " Prop torque = " << prop_torque << '\n';
+
+ // cout << FGEng1_RPM << " Blade_Angle " << FGProp1_Blade_Angle << endl << endl;
+
+ }
+
+ // cout << "Final engine RPM = " << RPM << '\n';
+}
+
+
+
+
+// Functions
+
+// Calculate Oil Temperature
+
+static float Oil_Temp (float Fuel_Flow, float Mixture, float IAS)
+{
+ float Oil_Temp = 85;
+
+ return (Oil_Temp);
+}
--- /dev/null
+// Module: 10520c.c
+// Author: Phil Schubert
+// Date started: 12/03/99
+// Purpose: Models a Continental IO-520-M Engine
+// Called by: FGSimExec
+//
+// Copyright (C) 1999 Philip L. Schubert (philings@ozemail.com.au)
+//
+// This program is free software; you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of the
+// License, or (at your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
+// 02111-1307, USA.
+//
+// Further information about the GNU General Public License can also
+// be found on the world wide web at http://www.gnu.org.
+//
+// FUNCTIONAL DESCRIPTION
+// ------------------------------------------------------------------------
+// Models a Continental IO-520-M engine. This engine is used in Cessna
+// 210, 310, Beechcraft Bonaza and Baron C55. The equations used below
+// were determined by a first and second order curve fits using Excel.
+// The data is from the Cessna Aircraft Corporations Engine and Flight
+// Computer for C310. Part Number D3500-13
+//
+// ARGUMENTS
+// ------------------------------------------------------------------------
+//
+//
+// HISTORY
+// ------------------------------------------------------------------------
+// 12/03/99 PLS Created
+// 07/03/99 PLS Added Calculation of Density, and Prop_Torque
+// 07/03/99 PLS Restructered Variables to allow easier implementation
+// of Classes
+// 15/03/99 PLS Added Oil Pressure, Oil Temperature and CH Temp
+// ------------------------------------------------------------------------
+// INCLUDES
+// ------------------------------------------------------------------------
+
+#ifndef _IO360_HXX_
+#define _IO360_HXX_
+
+#define NEVS_PROP_MODEL
+
+#ifndef NEVS_PROP_MODEL
+#define PHILS_PROP_MODEL
+#endif
+
+
+#include <iostream.h>
+#include <fstream.h>
+#include <math.h>
+
+
+class FGEngine {
+
+private:
+
+
+
+ float CONVERT_HP_TO_WATTS;
+ float CONVERT_CUBIC_INCHES_TO_METERS_CUBED;
+
+ // Control and environment inputs
+ float IAS;
+ // 0 = Closed, 100 = Fully Open
+ float Throttle_Lever_Pos;
+ // 0 = Full Course 100 = Full Fine
+ float Propeller_Lever_Pos;
+ // 0 = Idle Cut Off 100 = Full Rich
+ float Mixture_Lever_Pos;
+
+ // Engine Specific Variables used by this program that have limits.
+ // Will be set in a parameter file to be read in to create
+ // and instance for each engine.
+ float Max_Manifold_Pressure; //will be lower than ambient pressure for a non turbo/super charged engine due to losses through the throttle. This is the sea level full throttle value.
+ float Min_Manifold_Pressure; //Closed throttle valueat idle - governed by the idle bypass valve
+ float Max_RPM;
+ float Min_RPM;
+ float Max_Fuel_Flow;
+ float Mag_Derate_Percent;
+ float MaxHP;
+ float Gear_Ratio;
+
+ // Initialise Engine Variables used by this instance
+ float Percentage_Power; // Power output as percentage of maximum power output
+ float Manifold_Pressure; // Inches
+ float RPM;
+ float Fuel_Flow; // lbs/hour
+ float Torque;
+ float CHT; // Cylinder head temperature
+ float EGT; // Exhaust gas temperature
+ float Mixture;
+ float Oil_Pressure; // PSI
+ float Oil_Temp; // Deg C
+ float HP; // Current power output in HP
+ float Power_SI; // Current power output in Watts
+ float Torque_SI; // Torque in Nm
+ float RPS;
+ float Torque_Imbalance;
+ float Desired_RPM; // The RPM that we wish the constant speed prop to maintain if possible
+ bool started; //flag to indicate the engine is running self sustaining
+ bool cranking; //flag to indicate the engine is being cranked
+
+ //DCL
+ float volumetric_efficiency;
+ float combustion_efficiency;
+ float equivalence_ratio;
+ float v_dot_air;
+ float m_dot_air;
+ float m_dot_fuel;
+ float swept_volume;
+ float True_Manifold_Pressure; //in Hg
+ float rho_air_manifold;
+ float R_air;
+ float p_amb_sea_level; // Pascals
+ float p_amb; // Pascals
+ float T_amb; // deg Kelvin
+ float calorific_value_fuel;
+ float thi_sea_level;
+ float delta_T_exhaust;
+ float displacement; // Engine displacement in cubic inches - to be read in from config file for each engine
+ float displacement_SI; // ditto in meters cubed
+ float Cp_air; // J/KgK
+ float Cp_fuel; // J/KgK
+ float heat_capacity_exhaust;
+ float enthalpy_exhaust;
+ float Percentage_of_best_power_mixture_power;
+ float abstract_mixture; //temporary hack
+
+ // Initialise Propellor Variables used by this instance
+ float FGProp1_Angular_V;
+ float FGProp1_Coef_Drag;
+ float FGProp1_Torque;
+ float FGProp1_Thrust;
+ float FGProp1_RPS;
+ float FGProp1_Coef_Lift;
+ float Alpha1;
+ float FGProp1_Blade_Angle;
+ float FGProp_Fine_Pitch_Stop;
+
+#ifdef NEVS_PROP_MODEL
+ //Extra Propellor variables used by Nev's prop model
+ float prop_fudge_factor;
+ float prop_torque; //Nm
+ float prop_thrust;
+ float blade_length;
+ float allowance_for_spinner;
+ float num_elements;
+ float distance;
+ float number_of_blades;
+ float forward_velocity;
+ float angular_velocity_SI;
+ float element;
+ float element_drag;
+ float element_lift;
+ float element_torque;
+ float rho_air;
+ float prop_power_consumed_SI;
+ float prop_power_consumed_HP;
+ float theta[6]; //prop angle of each element
+#endif // NEVS_PROP_MODEL
+
+ // Other internal values
+ float Rho;
+
+ // Calculate Engine RPM based on Propellor Lever Position
+ float Calc_Engine_RPM (float Position);
+
+ // Calculate combustion efficiency based on equivalence ratio
+ float Lookup_Combustion_Efficiency(float thi_actual);
+
+ // Calculate exhaust gas temperature rise
+ float Calculate_Delta_T_Exhaust(void);
+
+public:
+
+ ofstream outfile;
+
+ //constructor
+ FGEngine() {
+ outfile.open("FGEngine.dat", ios::out|ios::trunc);
+ }
+
+ //destructor
+ ~FGEngine() {
+ outfile.close();
+ }
+
+ // set initial default values
+ void init();
+
+ // update the engine model based on current control positions
+ void update();
+
+ inline void set_IAS( float value ) { IAS = value; }
+ inline void set_Throttle_Lever_Pos( float value ) {
+ Throttle_Lever_Pos = value;
+ }
+ inline void set_Propeller_Lever_Pos( float value ) {
+ Propeller_Lever_Pos = value;
+ }
+ inline void set_Mixture_Lever_Pos( float value ) {
+ Mixture_Lever_Pos = value;
+ }
+
+ // accessors
+ inline float get_RPM() const { return RPM; }
+ inline float get_Manifold_Pressure() const { return Manifold_Pressure; }
+ inline float get_FGProp1_Thrust() const { return FGProp1_Thrust; }
+ inline float get_FGProp1_Blade_Angle() const { return FGProp1_Blade_Angle; }
+
+ inline float get_Rho() const { return Rho; }
+ inline float get_MaxHP() const { return MaxHP; }
+ inline float get_Percentage_Power() const { return Percentage_Power; }
+ inline float get_EGT() const { return EGT; }
+ inline float get_prop_thrust_SI() const { return prop_thrust; }
+};
+
+
+#endif // _10520D_HXX_