#include "light.hxx"
#include "sunsolver.hxx"
-/**
- * Map i.e. project a vector onto a plane.
- * @param normal (in) normal vector for the plane
- * @param v0 (in) a point on the plane
- * @param vec (in) the vector to map onto the plane
- */
-static SGVec3f map_vec_onto_cur_surface_plane(const SGVec3f& normal,
- const SGVec3f& v0,
- const SGVec3f& vec)
-{
- // calculate a vector "u1" representing the shortest distance from
- // the plane specified by normal and v0 to a point specified by
- // "vec". "u1" represents both the direction and magnitude of
- // this desired distance.
-
- // u1 = ( (normal <dot> vec) / (normal <dot> normal) ) * normal
- SGVec3f u1 = (dot(normal, vec) / dot(normal, normal)) * normal;
-
- // calculate the vector "v" which is the vector "vec" mapped onto
- // the plane specified by "normal" and "v0".
-
- // v = v0 + vec - u1
- SGVec3f v = v0 + vec - u1;
-
- // Calculate the vector "result" which is "v" - "v0" which is a
- // directional vector pointing from v0 towards v
-
- // result = v - v0
- return v - v0;
-}
-
-
// Constructor
FGLight::FGLight ()
: _ambient_tbl( NULL ),
SG_LOG( SG_EVENT, SG_DEBUG, " Gst = " << t->getGst() );
double sun_l;
- double sun_gd_lat;
- fgSunPositionGST(t->getGst(), &sun_l, &sun_gd_lat);
+ double sun_gc_lat;
+ fgSunPositionGST(t->getGst(), &sun_l, &sun_gc_lat);
set_sun_lon(sun_l);
- set_sun_lat(sun_gd_lat);
- SGVec3d sunpos(SGVec3d::fromGeod(SGGeod::fromRad(sun_l, sun_gd_lat)));
+ // It might seem that sun_gc_lat needs to be converted to geodetic
+ // latitude here, but it doesn't. The sun latitude is the latitude
+ // of the point on the earth where the up vector has the same
+ // angle from geocentric Z as the sun direction. But geodetic
+ // latitude is defined as 90 - angle of up vector from Z!
+ set_sun_lat(sun_gc_lat);
+ SGVec3d sunpos(SGVec3d::fromGeoc(SGGeoc::fromRadM(sun_l, sun_gc_lat,
+ SGGeodesy::EQURAD)));
SG_LOG( SG_EVENT, SG_DEBUG, " t->cur_time = " << t->get_cur_time() );
SG_LOG( SG_EVENT, SG_DEBUG,
- " Sun Geodetic lat = " << sun_gd_lat
- << " Geodetic lat = " << sun_gd_lat );
+ " Sun Geocentric lat = " << sun_gc_lat
+ << " Geodcentric lat = " << sun_gc_lat );
// update the sun light vector
sun_vec() = SGVec4f(toVec3f(normalize(sunpos)), 0);
// calculate the sun's relative angle to local up
SGVec3d viewPos = v->get_view_pos();
SGQuatd hlOr = SGQuatd::fromLonLat(SGGeod::fromCart(viewPos));
- SGVec3f world_up = toVec3f(hlOr.backTransform(-SGVec3d::e3()));
- SGVec3f nsun = toVec3f(normalize(sunpos));
+ SGVec3d world_up = hlOr.backTransform(-SGVec3d::e3());
+ SGVec3d nsun = normalize(sunpos);
// cout << "nup = " << nup[0] << "," << nup[1] << ","
// << nup[2] << endl;
// cout << "nsun = " << nsun[0] << "," << nsun[1] << ","
SG_LOG( SG_EVENT, SG_DEBUG, "sun angle relative to current location = "
<< get_sun_angle() );
- // calculate vector to sun's position on the earth's surface
- SGVec3d rel_sunpos = sunpos - v->get_view_pos();
- // vector in cartesian coordinates from current position to the
- // postion on the earth's surface the sun is directly over
- SGVec3f to_sun = toVec3f(rel_sunpos);
- // printf( "Vector to sun = %.2f %.2f %.2f\n",
- // v->to_sun[0], v->to_sun[1], v->to_sun[2]);
-
- // Given a vector from the view position to the point on the
- // earth's surface the sun is directly over, map into onto the
- // local plane representing "horizontal".
-
- // surface direction to go to head towards sun
- SGVec3f surface_to_sun;
- SGVec3f view_pos = toVec3f(v->get_view_pos());
- surface_to_sun = map_vec_onto_cur_surface_plane(world_up, view_pos, to_sun);
- surface_to_sun = normalize(surface_to_sun);
- // cout << "(sg) Surface direction to sun is "
- // << surface_to_sun[0] << ","
- // << surface_to_sun[1] << ","
- // << surface_to_sun[2] << endl;
- // cout << "Should be close to zero = "
- // << sgScalarProductVec3(nup, surface_to_sun) << endl;
-
- // calculate the angle between surface_to_sun and
- // v->get_surface_east(). We do this so we can sort out the
- // acos() ambiguity. I wish I could think of a more efficient
- // way. :-(
- SGVec3f surface_east(toVec3f(hlOr.backTransform(SGVec3d::e2())));
- float east_dot = dot( surface_to_sun, surface_east );
- // cout << " East dot product = " << east_dot << endl;
-
- // calculate the angle between v->surface_to_sun and
- // v->surface_south. this is how much we have to rotate the sky
- // for it to align with the sun
- SGVec3f surface_south(toVec3f(hlOr.backTransform(-SGVec3d::e1())));
- float dot_ = dot( surface_to_sun, surface_south );
- // cout << " Dot product = " << dot << endl;
-
- if (dot_ > 1.0) {
- SG_LOG( SG_ASTRO, SG_INFO,
- "Dot product = " << dot_ << " is greater than 1.0" );
- dot_ = 1.0;
- }
- else if (dot_ < -1.0) {
- SG_LOG( SG_ASTRO, SG_INFO,
- "Dot product = " << dot_ << " is less than -1.0" );
- dot_ = -1.0;
- }
-
- if ( east_dot >= 0 ) {
- set_sun_rotation( acos(dot_) );
- } else {
- set_sun_rotation( -acos(dot_) );
- }
+ // Get direction to the sun in the local frame.
+ SGVec3d local_sun_vec = hlOr.transform(nsun);
+ // Angle from south. XXX Is this correct in the southern hemisphere?
+ double angle = atan2(local_sun_vec.x(), -local_sun_vec.y());
+ set_sun_rotation(angle);
// cout << " Sky needs to rotate = " << angle << " rads = "
// << angle * SGD_RADIANS_TO_DEGREES << " degrees." << endl;
-
}
SGPropertyNode* sun = fgGetNode("/ephemeris/sun");
assert(sun);
- double beta = sun->getDoubleValue("lat-deg");
- // double r = globals->get_ephem()->get_sun()->getDistance();
double xs = sun->getDoubleValue("xs");
double ys = sun->getDoubleValue("ys");
double ye = sun->getDoubleValue("ye");
double ze = sun->getDoubleValue("ze");
- alpha = atan2(ys - tan(beta)*ze/ys, xs);
- delta = asin(sin(beta)*ye/ys + cos(beta)*ze);
+ double ra = atan2(ye, xs);
+ double dec = atan2(ze, sqrt(xs * xs + ye * ye));
- tmp = alpha - (SGD_2PI/24)*gst;
+ tmp = ra - (SGD_2PI/24)*gst;
if (tmp < -SGD_PI) {
do tmp += SGD_2PI;
while (tmp < -SGD_PI);
}
*lon = tmp;
- *lat = delta;
+ *lat = dec;
}
static double sun_angle( const SGTime &t, const SGVec3d& world_up,
SG_LOG( SG_EVENT, SG_DEBUG, " Updating Sun position" );
SG_LOG( SG_EVENT, SG_DEBUG, " Gst = " << t.getGst() );
- double sun_lon, sun_gd_lat;
- fgSunPositionGST( t.getGst(), &sun_lon, &sun_gd_lat );
- SGVec3d sunpos = SGVec3d::fromGeod(SGGeod::fromRad(sun_lon, sun_gd_lat));
+ double sun_lon, sun_gc_lat;
+ fgSunPositionGST( t.getGst(), &sun_lon, &sun_gc_lat );
+ SGVec3d sunpos = SGVec3d::fromGeoc(SGGeoc::fromRadM(sun_lon, sun_gc_lat,
+ SGGeodesy::EQURAD));
SG_LOG( SG_EVENT, SG_DEBUG, " t.cur_time = " << t.get_cur_time() );
SG_LOG( SG_EVENT, SG_DEBUG,
- " Sun Geodetic lat = " << sun_gd_lat );
+ " Sun Geocentric lat = " << sun_gc_lat );
// calculate the sun's relative angle to local up
- SGVec3f nup = normalize(toVec3f(world_up));
- SGVec3f nsun = normalize(toVec3f(sunpos));
+ SGVec3d nup = normalize(world_up);
+ SGVec3d nsun = normalize(sunpos);
// cout << "nup = " << nup[0] << "," << nup[1] << ","
// << nup[2] << endl;
// cout << "nsun = " << nsun[0] << "," << nsun[1] << ","