#include "views.hxx"
-// Define following to extract various vectors directly
-// from matrices we have allready computed
-// rather then performing 'textbook algebra' to rederive them
-// Norman Vine -- nhv@yahoo.com
-// #define FG_VIEW_INLINE_OPTIMIZATIONS
-
// temporary (hopefully) hack
static int panel_hist = 0;
-// specify code paths ... these are done as variable rather than
-// #define's because down the road we may want to choose between them
-// on the fly for different flight models ... this way magic carpet
-// and external modes wouldn't need to recreate the LaRCsim matrices
-// themselves.
-
-static const bool use_larcsim_local_to_body = false;
-
-
// This is a record containing current view parameters for the current
// aircraft position
FGView pilot_view;
((GLfloat) (winHeight)*0.4232) );
}
- force_update_fov_math();
-}
-
-
-// Update the field of view coefficients
-void FGView::UpdateFOV( const fgOPTIONS& o ) {
- ssgSetFOV( o.get_fov(), 0.0 );
-
- double fov, theta_x, theta_y;
+ // This never changes -- NHV
+ sgLARC_TO_SSG[0][0] = 0.0;
+ sgLARC_TO_SSG[0][1] = 1.0;
+ sgLARC_TO_SSG[0][2] = -0.0;
+ sgLARC_TO_SSG[0][3] = 0.0;
- fov = o.get_fov();
+ sgLARC_TO_SSG[1][0] = 0.0;
+ sgLARC_TO_SSG[1][1] = 0.0;
+ sgLARC_TO_SSG[1][2] = 1.0;
+ sgLARC_TO_SSG[1][3] = 0.0;
- // printf("win_ratio = %.2f\n", win_ratio);
- // calculate sin() and cos() of fov / 2 in X direction;
- theta_x = (fov * win_ratio * DEG_TO_RAD) / 2.0;
- // printf("theta_x = %.2f\n", theta_x);
- sin_fov_x = sin(theta_x);
- cos_fov_x = cos(theta_x);
- slope_x = -cos_fov_x / sin_fov_x;
- // printf("slope_x = %.2f\n", slope_x);
-
- // fov_x_clip and fov_y_clip convoluted algebraic simplification
- // see code executed in tilemgr.cxx when USE_FAST_FOV_CLIP not
- // defined Norman Vine -- nhv@yahoo.com
-#if defined( USE_FAST_FOV_CLIP )
- fov_x_clip = slope_x*cos_fov_x - sin_fov_x;
-#endif // defined( USE_FAST_FOV_CLIP )
-
- // calculate sin() and cos() of fov / 2 in Y direction;
- theta_y = (fov * DEG_TO_RAD) / 2.0;
- // printf("theta_y = %.2f\n", theta_y);
- sin_fov_y = sin(theta_y);
- cos_fov_y = cos(theta_y);
- slope_y = cos_fov_y / sin_fov_y;
- // printf("slope_y = %.2f\n", slope_y);
-
-#if defined( USE_FAST_FOV_CLIP )
- fov_y_clip = -(slope_y*cos_fov_y + sin_fov_y);
-#endif // defined( USE_FAST_FOV_CLIP )
+ sgLARC_TO_SSG[2][0] = 1.0;
+ sgLARC_TO_SSG[2][1] = -0.0;
+ sgLARC_TO_SSG[2][2] = 0.0;
+ sgLARC_TO_SSG[2][3] = 0.0;
+
+ sgLARC_TO_SSG[3][0] = 0.0;
+ sgLARC_TO_SSG[3][1] = 0.0;
+ sgLARC_TO_SSG[3][2] = 0.0;
+ sgLARC_TO_SSG[3][3] = 1.0;
+
+ force_update_fov_math();
}
-
// Update the view volume, position, and orientation
void FGView::UpdateViewParams( const FGInterface& f ) {
UpdateViewMath(f);
}
-void getRotMatrix(double* out, MAT3vec vec, double radians)
-{
- /* This function contributed by Erich Boleyn (erich@uruk.org) */
- /* This function used from the Mesa OpenGL code (matrix.c) */
- double s, c; // mag,
- double vx, vy, vz, xy, yz, zx, xs, ys, zs, one_c; //, xx, yy, zz
-
- MAT3identity(out);
- s = sin(radians);
- c = cos(radians);
-
- // mag = getMagnitude();
-
- vx = vec[0];
- vy = vec[1];
- vz = vec[2];
-
-#define M(row,col) out[row*4 + col]
-
- /*
- * Arbitrary axis rotation matrix.
- *
- * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
- * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
- * (which is about the X-axis), and the two composite transforms
- * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
- * from the arbitrary axis to the X-axis then back. They are
- * all elementary rotations.
- *
- * Rz' is a rotation about the Z-axis, to bring the axis vector
- * into the x-z plane. Then Ry' is applied, rotating about the
- * Y-axis to bring the axis vector parallel with the X-axis. The
- * rotation about the X-axis is then performed. Ry and Rz are
- * simply the respective inverse transforms to bring the arbitrary
- * axis back to it's original orientation. The first transforms
- * Rz' and Ry' are considered inverses, since the data from the
- * arbitrary axis gives you info on how to get to it, not how
- * to get away from it, and an inverse must be applied.
- *
- * The basic calculation used is to recognize that the arbitrary
- * axis vector (x, y, z), since it is of unit length, actually
- * represents the sines and cosines of the angles to rotate the
- * X-axis to the same orientation, with theta being the angle about
- * Z and phi the angle about Y (in the order described above)
- * as follows:
- *
- * cos ( theta ) = x / sqrt ( 1 - z^2 )
- * sin ( theta ) = y / sqrt ( 1 - z^2 )
- *
- * cos ( phi ) = sqrt ( 1 - z^2 )
- * sin ( phi ) = z
- *
- * Note that cos ( phi ) can further be inserted to the above
- * formulas:
- *
- * cos ( theta ) = x / cos ( phi )
- * sin ( theta ) = y / cos ( phi )
- *
- * ...etc. Because of those relations and the standard trigonometric
- * relations, it is pssible to reduce the transforms down to what
- * is used below. It may be that any primary axis chosen will give the
- * same results (modulo a sign convention) using thie method.
- *
- * Particularly nice is to notice that all divisions that might
- * have caused trouble when parallel to certain planes or
- * axis go away with care paid to reducing the expressions.
- * After checking, it does perform correctly under all cases, since
- * in all the cases of division where the denominator would have
- * been zero, the numerator would have been zero as well, giving
- * the expected result.
- */
-
- one_c = 1.0F - c;
-
- // xx = vx * vx;
- // yy = vy * vy;
- // zz = vz * vz;
-
- // xy = vx * vy;
- // yz = vy * vz;
- // zx = vz * vx;
-
-
- M(0,0) = (one_c * vx * vx) + c;
- xs = vx * s;
- yz = vy * vz * one_c;
- M(1,2) = yz + xs;
- M(2,1) = yz - xs;
-
- M(1,1) = (one_c * vy * vy) + c;
- ys = vy * s;
- zx = vz * vx * one_c;
- M(0,2) = zx - ys;
- M(2,0) = zx + ys;
-
- M(2,2) = (one_c * vz *vz) + c;
- zs = vz * s;
- xy = vx * vy * one_c;
- M(0,1) = xy + zs;
- M(1,0) = xy - zs;
-
- // M(0,0) = (one_c * xx) + c;
- // M(1,0) = (one_c * xy) - zs;
- // M(2,0) = (one_c * zx) + ys;
-
- // M(0,1) = (one_c * xy) + zs;
- // M(1,1) = (one_c * yy) + c;
- // M(2,1) = (one_c * yz) - xs;
-
- // M(0,2) = (one_c * zx) - ys;
- // M(1,2) = (one_c * yz) + xs;
- // M(2,2) = (one_c * zz) + c;
-
-#undef M
+// convert sgMat4 to MAT3 and print
+static void print_sgMat4( sgMat4 &in) {
+ MAT3mat print;
+ int i;
+ int j;
+ for ( i = 0; i < 4; i++ ) {
+ for ( j = 0; j < 4; j++ ) {
+ print[i][j] = in[i][j];
+ }
+ }
+ MAT3print( print, stdout);
+}
+
+
+// convert convert MAT3 to sgMat4
+static void MAT3mat_To_sgMat4( MAT3mat &in, sgMat4 &out ) {
+ out[0][0] = in[0][0];
+ out[0][1] = in[0][1];
+ out[0][2] = in[0][2];
+ out[0][3] = in[0][3];
+ out[1][0] = in[1][0];
+ out[1][1] = in[1][1];
+ out[1][2] = in[1][2];
+ out[1][3] = in[1][3];
+ out[2][0] = in[2][0];
+ out[2][1] = in[2][1];
+ out[2][2] = in[2][2];
+ out[2][3] = in[2][3];
+ out[3][0] = in[3][0];
+ out[3][1] = in[3][1];
+ out[3][2] = in[3][2];
+ out[3][3] = in[3][3];
}
double ntmp;
if ( update_fov ) {
- // printf("Updating fov\n");
- UpdateFOV( current_options );
+ ssgSetFOV( current_options.get_fov(),
+ current_options.get_fov() * win_ratio );
update_fov = false;
}
scenery.center = scenery.next_center;
-#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
// printf("scenery center = %.2f %.2f %.2f\n", scenery.center.x,
// scenery.center.y, scenery.center.z);
abs_view_pos = fgPolarToCart3d(p);
-#else // FG_VIEW_INLINE_OPTIMIZATIONS
-
- double tmp_radius = f.get_Sea_level_radius() * FEET_TO_METER;
- double tmp = f.get_cos_lat_geocentric() * tmp_radius;
-
- cur_zero_elev.setx(f.get_cos_longitude()*tmp - scenery.center.x());
- cur_zero_elev.sety(f.get_sin_longitude()*tmp - scenery.center.y());
- cur_zero_elev.setz(f.get_sin_lat_geocentric()*tmp_radius - scenery.center.z());
-
- // calculate view position in current FG view coordinate system
- // p.lon & p.lat are already defined earlier, p.radius was set to
- // the sea level radius, so now we add in our altitude.
- if ( f.get_Altitude() * FEET_TO_METER >
- (scenery.cur_elev + 0.5 * METER_TO_FEET) ) {
- tmp_radius += f.get_Altitude() * FEET_TO_METER;
- } else {
- tmp_radius += scenery.cur_elev + 0.5 * METER_TO_FEET ;
- }
- tmp = f.get_cos_lat_geocentric() * tmp_radius;
- abs_view_pos.setx(f.get_cos_longitude()*tmp);
- abs_view_pos.sety(f.get_sin_longitude()*tmp);
- abs_view_pos.setz(f.get_sin_lat_geocentric()*tmp_radius);
-
-#endif // FG_VIEW_INLINE_OPTIMIZATIONS
-
view_pos = abs_view_pos - scenery.center;
FG_LOG( FG_VIEW, FG_DEBUG, "Polar view pos = " << p );
FG_LOG( FG_VIEW, FG_DEBUG, "Absolute view pos = " << abs_view_pos );
FG_LOG( FG_VIEW, FG_DEBUG, "Relative view pos = " << view_pos );
- // Derive the LOCAL aircraft rotation matrix (roll, pitch, yaw)
- // from FG_T_local_to_body[3][3]
-
- if ( use_larcsim_local_to_body ) {
+ // code to calculate LOCAL matrix calculated from Phi, Theta, and
+ // Psi (roll, pitch, yaw) in case we aren't running LaRCsim as our
+ // flight model
- // Question: Why is the LaRCsim matrix arranged so differently
- // than the one we need???
-
- // Answer (I think): The LaRCsim matrix is generated in a
- // different reference frame than we've set up for our world
+ MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
+ MAT3rotate(R, vec, f.get_Phi());
+ // cout << "Roll matrix" << endl;
+ // MAT3print(R, stdout);
- LOCAL[0][0] = f.get_T_local_to_body_33();
- LOCAL[0][1] = -f.get_T_local_to_body_32();
- LOCAL[0][2] = -f.get_T_local_to_body_31();
- LOCAL[0][3] = 0.0;
- LOCAL[1][0] = -f.get_T_local_to_body_23();
- LOCAL[1][1] = f.get_T_local_to_body_22();
- LOCAL[1][2] = f.get_T_local_to_body_21();
- LOCAL[1][3] = 0.0;
- LOCAL[2][0] = -f.get_T_local_to_body_13();
- LOCAL[2][1] = f.get_T_local_to_body_12();
- LOCAL[2][2] = f.get_T_local_to_body_11();
- LOCAL[2][3] = 0.0;
- LOCAL[3][0] = LOCAL[3][1] = LOCAL[3][2] = LOCAL[3][3] = 0.0;
- LOCAL[3][3] = 1.0;
+ sgVec3 sgrollvec;
+ sgSetVec3( sgrollvec, 0.0, 0.0, 1.0 );
+ sgMat4 sgPHI; // roll
+ sgMakeRotMat4( sgPHI, f.get_Phi() * RAD_TO_DEG, sgrollvec );
- // printf("LaRCsim LOCAL matrix\n");
- // MAT3print(LOCAL, stdout);
+ MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
+ MAT3rotate(TMP, vec, f.get_Theta());
+ // cout << "Pitch matrix" << endl;;
+ // MAT3print(TMP, stdout);
+ MAT3mult(R, R, TMP);
+ // cout << "tmp rotation matrix, R:" << endl;;
+ // MAT3print(R, stdout);
- } else {
+ sgVec3 sgpitchvec;
+ sgSetVec3( sgpitchvec, 0.0, 1.0, 0.0 );
+ sgMat4 sgTHETA; // pitch
+ sgMakeRotMat4( sgTHETA, f.get_Theta() * RAD_TO_DEG,
+ sgpitchvec );
- // calculate the transformation matrix to go from LaRCsim to ssg
- sgVec3 vec1;
- sgSetVec3( vec1, 0.0, 1.0, 0.0 );
- sgMat4 mat1;
- sgMakeRotMat4( mat1, 90, vec1 );
-
- sgVec3 vec2;
- sgSetVec3( vec2, 1.0, 0.0, 0.0 );
- sgMat4 mat2;
- sgMakeRotMat4( mat2, 90, vec2 );
-
- sgMultMat4( sgLARC_TO_SSG, mat1, mat2 );
-
- /*
- cout << "LaRCsim to SSG:" << endl;
- MAT3mat print;
- int i;
- int j;
- for ( i = 0; i < 4; i++ ) {
- for ( j = 0; j < 4; j++ ) {
- print[i][j] = sgLARC_TO_SSG[i][j];
- }
- }
- MAT3print( print, stdout);
- */
-
- // code to calculate LOCAL matrix calculated from Phi, Theta, and
- // Psi (roll, pitch, yaw) in case we aren't running LaRCsim as our
- // flight model
-
- MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
- MAT3rotate(R, vec, f.get_Phi());
- // cout << "Roll matrix" << endl;
- // MAT3print(R, stdout);
-
- sgVec3 sgrollvec;
- sgSetVec3( sgrollvec, 0.0, 0.0, 1.0 );
- sgMat4 sgPHI; // roll
- sgMakeRotMat4( sgPHI, f.get_Phi() * RAD_TO_DEG, sgrollvec );
-
-
- MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
- MAT3rotate(TMP, vec, f.get_Theta());
- // cout << "Pitch matrix" << endl;;
- // MAT3print(TMP, stdout);
- MAT3mult(R, R, TMP);
- // cout << "tmp rotation matrix, R:" << endl;;
- // MAT3print(R, stdout);
-
- sgVec3 sgpitchvec;
- sgSetVec3( sgpitchvec, 0.0, 1.0, 0.0 );
- sgMat4 sgTHETA; // pitch
- sgMakeRotMat4( sgTHETA, f.get_Theta() * RAD_TO_DEG,
- sgpitchvec );
-
- sgMat4 sgROT;
- sgMultMat4( sgROT, sgPHI, sgTHETA );
-
-
- MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
- MAT3rotate(TMP, vec, -f.get_Psi());
- // cout << "Yaw matrix" << endl;
- // MAT3print(TMP, stdout);
- MAT3mult(LOCAL, R, TMP);
- // cout << "LOCAL matrix:" << endl;
- // MAT3print(LOCAL, stdout);
-
- sgVec3 sgyawvec;
- sgSetVec3( sgyawvec, 1.0, 0.0, 0.0 );
- sgMat4 sgPSI; // pitch
- sgMakeRotMat4( sgPSI, -f.get_Psi() * RAD_TO_DEG, sgyawvec );
-
- sgMultMat4( sgLOCAL, sgROT, sgPSI );
-
- /*
- MAT3mat print;
- int i;
- int j;
- for ( i = 0; i < 4; i++ ) {
- for ( j = 0; j < 4; j++ ) {
- print[i][j] = sgLOCAL[i][j];
- }
- }
- MAT3print( print, stdout);
- */
- } // if ( use_larcsim_local_to_body )
+ sgMat4 sgROT;
+ sgMultMat4( sgROT, sgPHI, sgTHETA );
-#if !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
+ MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
+ MAT3rotate(TMP, vec, -f.get_Psi());
+ // cout << "Yaw matrix" << endl;
+ // MAT3print(TMP, stdout);
+ MAT3mult(LOCAL, R, TMP);
+ // cout << "LOCAL matrix:" << endl;
+ // MAT3print(LOCAL, stdout);
+
+ sgVec3 sgyawvec;
+ sgSetVec3( sgyawvec, 1.0, 0.0, 0.0 );
+ sgMat4 sgPSI; // pitch
+ sgMakeRotMat4( sgPSI, -f.get_Psi() * RAD_TO_DEG, sgyawvec );
+
+ sgMultMat4( sgLOCAL, sgROT, sgPSI );
+ // cout << "sgLOCAL matrix" << endl;
+ // print_sgMat4( sgLOCAL );
// Derive the local UP transformation matrix based on *geodetic*
// coordinates
0.0,
-f.get_Latitude() * RAD_TO_DEG );
/*
- cout << "FG derived UP matrix using sg routines" << endl;
+ cout << "FG derived UP matrix using sg routines" << endl;
MAT3mat print;
int i;
int j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
- print[i][j] = sgUP[i][j];
+ print[i][j] = sgUP[i][j];
+ }
}
- }
MAT3print( print, stdout);
*/
// generate the view offset matrix
sgMakeRotMat4( sgVIEW_OFFSET, view_offset * RAD_TO_DEG, sgview_up );
-
- /*
- cout << "sg VIEW_OFFSET matrix" << endl;
- MAT3mat print;
- int i;
- int j;
- for ( i = 0; i < 4; i++ ) {
- for ( j = 0; j < 4; j++ ) {
- print[i][j] = sgVIEW_OFFSET[i][j];
- }
- }
- MAT3print( print, stdout);
- */
-
+ // cout << "sgVIEW_OFFSET matrix" << endl;
+ // print_sgMat4( sgVIEW_OFFSET );
+
sgMultMat4( sgTMP2, sgTMP, sgVIEW_OFFSET );
sgMultMat4( sgVIEW_ROT, sgLARC_TO_SSG, sgTMP2 );
// surface_east[0], surface_east[1], surface_east[2]);
// printf( "Should be close to zero = %.2f\n",
// MAT3_DOT_PRODUCT(surface_south, surface_east));
-
-#else // FG_VIEW_INLINE_OPTIMIZATIONS
-
- // // Build spherical to cartesian transform matrix directly
- double cos_lat = f.get_cos_latitude(); // cos(-f.get_Latitude());
- double sin_lat = -f.get_sin_latitude(); // sin(-f.get_Latitude());
- double cos_lon = f.get_cos_longitude(); //cos(f.get_Longitude());
- double sin_lon = f.get_sin_longitude(); //sin(f.get_Longitude());
-
- double *mat = (double *)UP;
-
- mat[0] = cos_lat*cos_lon;
- mat[1] = cos_lat*sin_lon;
- mat[2] = -sin_lat;
- mat[3] = 0.0;
- mat[4] = -sin_lon;
- mat[5] = cos_lon;
- mat[6] = 0.0;
- mat[7] = 0.0;
- mat[8] = sin_lat*cos_lon;
- mat[9] = sin_lat*sin_lon;
- mat[10] = cos_lat;
- mat[11] = mat[12] = mat[13] = mat[14] = 0.0;
- mat[15] = 1.0;
-
- MAT3mult(VIEW, LOCAL, UP);
-
- // THESE COULD JUST BE POINTERS !!!
- MAT3_SET_VEC(local_up, mat[0], mat[1], mat[2]);
- MAT3_SET_VEC(view_up, VIEW[0][0], VIEW[0][1], VIEW[0][2]);
- MAT3_SET_VEC(forward, VIEW[2][0], VIEW[2][1], VIEW[2][2]);
-
- getRotMatrix((double *)TMP, view_up, view_offset);
- MAT3mult_vec(view_forward, forward, TMP);
-
- // make a vector to the current view position
- MAT3_SET_VEC(v0, view_pos.x(), view_pos.y(), view_pos.z());
-
- // Given a vector pointing straight down (-Z), map into onto the
- // local plane representing "horizontal". This should give us the
- // local direction for moving "south".
- MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0);
- map_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south);
-
- MAT3_NORMALIZE_VEC(surface_south, ntmp);
- // printf( "Surface direction directly south %.6f %.6f %.6f\n",
- // surface_south[0], surface_south[1], surface_south[2]);
-
- // now calculate the surface east vector
- getRotMatrix((double *)TMP, view_up, FG_PI_2);
- MAT3mult_vec(surface_east, surface_south, TMP);
- // printf( "Surface direction directly east %.6f %.6f %.6f\n",
- // surface_east[0], surface_east[1], surface_east[2]);
- // printf( "Should be close to zero = %.6f\n",
- // MAT3_DOT_PRODUCT(surface_south, surface_east));
-#endif // !defined(FG_VIEW_INLINE_OPTIMIZATIONS)
}