to do, but we are marching in the right direction.
FGArray::FGArray( void ) {
// cout << "class FGArray CONstructor called." << endl;
in_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
- out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
+ // out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
}
FGArray::FGArray( const string &file ) {
// cout << "class FGArray CONstructor called." << endl;
in_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
- out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
+ // out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1];
FGArray::open(file);
}
}
+// add a node to the output (fitted) node list
+void FGArray::add_fit_node( int i, int j, double val ) {
+ double x = (originx + i * col_step) / 3600.0;
+ double y = (originy + j * row_step) / 3600.0;
+ cout << Point3D(x, y, val) << endl;
+ node_list.push_back( Point3D(x, y, val) );
+}
+
+
+#if 0
// Initialize output mesh structure
void FGArray::outputmesh_init( void ) {
int i, j;
// cout << "Setting data[" << i << "][" << j << "] = " << value << endl;
out_data[i][j] = value;
}
+#endif
// Use least squares to fit a simpler data set to dem data
error_sq = error * error;
cout << " Initializing output mesh structure" << endl;
- outputmesh_init();
+ // outputmesh_init();
// determine dimensions
colmin = 0;
<< colmax << "," << rowmax << endl;;
// include the corners explicitly
- outputmesh_set_pt(colmin, rowmin, in_data[colmin][rowmin]);
- outputmesh_set_pt(colmin, rowmax, in_data[colmin][rowmax]);
- outputmesh_set_pt(colmax, rowmax, in_data[colmax][rowmax]);
- outputmesh_set_pt(colmax, rowmin, in_data[colmax][rowmin]);
+ add_fit_node( colmin, rowmin, in_data[colmin][rowmin] );
+ add_fit_node( colmin, rowmax-1, in_data[colmin][rowmax] );
+ add_fit_node( colmax-1, rowmin, in_data[colmax][rowmin] );
+ add_fit_node( colmax-1, rowmax-1, in_data[colmax][rowmax] );
cout << " Beginning best fit procedure" << endl;
lasty = 0;
if ( start > colmin ) {
// skip this for the first line segment
cury = m * x[0] + b;
- outputmesh_set_pt(start, row, (lasty + cury) / 2);
+ add_fit_node( start, row, (lasty + cury) / 2 );
// fprintf(fit, "%.2f %.2f\n", x[0], (lasty + cury) / 2);
}
FGArray::~FGArray( void ) {
// printf("class FGArray DEstructor called.\n");
delete [] in_data;
- delete [] out_data;
+ // delete [] out_data;
}
// $Log$
+// Revision 1.4 1999/03/20 20:32:51 curt
+// First mostly successful tile triangulation works. There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
// Revision 1.3 1999/03/17 23:48:17 curt
// Removed forced -g compile flag.
// Fixed a couple compiler warnings.
#endif
+#include <Include/compiler.h>
+
+#include <vector>
+
#include <Bucket/newbucket.hxx>
+#include <Math/point3d.hxx>
#include <Misc/fgstream.hxx>
+FG_USING_STD(vector);
+
#define ARRAY_SIZE 1200
#define ARRAY_SIZE_1 1201
+typedef vector < Point3D > fitnode_list;
+typedef fitnode_list::iterator fitnode_list_iterator;
+typedef fitnode_list::const_iterator const_fitnode_list_iterator;
+
+
class FGArray {
private:
// pointers to the actual grid data allocated here
float (*in_data)[ARRAY_SIZE_1];
- float (*out_data)[ARRAY_SIZE_1];
-
- // Current "A" Record Information
- // char dem_description[80], dem_quadrangle[80];
- // double dem_x1, dem_y1, dem_x2, dem_y2, dem_x3, dem_y3, dem_x4, dem_y4;
- // double dem_z1, dem_z2;
- // int dem_resolution, dem_num_profiles;
-
- // Current "B" Record Information
- // int prof_col, prof_row;
- // int prof_num_cols, prof_num_rows;
- // double prof_x1, prof_y1;
- // int prof_data;
-
- // temporary values for the class to use
- // char option_name[32];
- // int do_data;
- // int cur_col, cur_row;
+ // float (*out_data)[ARRAY_SIZE_1];
+
+ // output nodes
+ fitnode_list node_list;
// Initialize output mesh structure
- void outputmesh_init( void );
+ // void outputmesh_init( void );
// Get the value of a mesh node
- double outputmesh_get_pt( int i, int j );
+ // double outputmesh_get_pt( int i, int j );
// Set the value of a mesh node
- void outputmesh_set_pt( int i, int j, double value );
+ // void outputmesh_set_pt( int i, int j, double value );
#if 0
// Write out a node file that can be used by the "triangle" program
- void outputmesh_output_nodes( const string& fg_root, FGBucket& p );
+ // void outputmesh_output_nodes( const string& fg_root, FGBucket& p );
#endif
public:
// Use least squares to fit a simpler data set to dem data
void fit( double error );
+ // add a node to the output (fitted) node list
+ void add_fit_node( int i, int j, double val );
+
// return the current altitude based on grid data. We should
// rewrite this to interpolate exact values, but for now this is
// good enough
inline int get_rows() const { return rows; }
inline double get_col_step() const { return col_step; }
inline double get_row_step() const { return row_step; }
+
+ inline fitnode_list get_fit_node_list() const { return node_list; }
};
// $Log$
+// Revision 1.3 1999/03/20 20:32:52 curt
+// First mostly successful tile triangulation works. There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
// Revision 1.2 1999/03/13 23:50:27 curt
// Tweaked output formatting a bit.
//
$(top_builddir)/Tools/Construct/Clipper/libClipper.a \
$(top_builddir)/Tools/Construct/Triangulate/libTriangulate.a \
$(top_builddir)/Tools/Lib/Polygon/libPolygon.a \
+ $(top_builddir)/Tools/Lib/Triangle/libTriangle.a \
$(top_builddir)/Lib/Bucket/libBucket.a \
$(top_builddir)/Lib/Math/libMath.a \
$(top_builddir)/Lib/Misc/libMisc.a \
#include <Triangulate/triangle.hxx>
-// load regular grid of elevation data (dem based)
+// load regular grid of elevation data (dem based), return list of
+// fitted nodes
int load_dem(const string& work_base, FGBucket& b, FGArray& array) {
+ fitnode_list result;
char tile_name[256];
string base = b.gen_base_path();
long int b_index = b.gen_index();
cout << "dem_path = " << dem_path << endl;
if ( ! array.open(dem_path) ) {
+ cout << "ERROR: cannot open " << dem_path << endl;
return 0;
}
+
array.parse();
array.fit( 100 );
// triangulate the data for each polygon
-void triangulate( const FGArray& array, const FGClipper& clipper,
+void do_triangulate( const FGArray& array, const FGClipper& clipper,
FGTriangle& t ) {
- // first we need to consolidate the points of all the polygons
- // into a more "Triangle" friendly format
- FGgpcPolyList gpc_polys;
+ // first we need to consolidate the points of the DEM fit list and
+ // all the polygons into a more "Triangle" friendly format
- gpc_polys = clipper.get_polys_clipped();
+ fitnode_list fit_list = array.get_fit_node_list();
+ FGgpcPolyList gpc_polys = clipper.get_polys_clipped();
cout << "ready to build node list and polygons" << endl;
- t.build( gpc_polys );
+ t.build( fit_list, gpc_polys );
cout << "done building node list and polygons" << endl;
+
+ cout << "ready to do triangulation" << endl;
+ t.run_triangulate();
+ cout << "finished triangulation" << endl;
}
main(int argc, char **argv) {
+ fitnode_list fit_list;
double lon, lat;
if ( argc != 2 ) {
// triangulate the data for each polygon
FGTriangle t;
- triangulate( array, clipper, t );
+ do_triangulate( array, clipper, t );
}
// $Log$
+// Revision 1.4 1999/03/20 20:32:54 curt
+// First mostly successful tile triangulation works. There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
// Revision 1.3 1999/03/19 00:26:52 curt
// Minor tweaks ...
//
#include "triangle.hxx"
#include "tripoly.hxx"
-
// Constructor
FGTriangle::FGTriangle( void ) {
}
// populate this class based on the specified gpc_polys list
-int FGTriangle::build( const FGgpcPolyList& gpc_polys ) {
+int
+FGTriangle::build( const fitnode_list& fit_list,
+ const FGgpcPolyList& gpc_polys )
+{
int index;
- // traverse the gpc_polys and build a unified node list and a set
- // of Triangle PSLG that reference the node list by index
- // (starting at zero)
+
+ // traverse the dem fit list and gpc_polys building a unified node
+ // list and converting the polygons so that they reference the
+ // node list by index (starting at zero) rather than listing the
+ // points explicitely
+
+ const_fitnode_list_iterator f_current, f_last;
+ f_current = fit_list.begin();
+ f_last = fit_list.end();
+ for ( ; f_current != f_last; ++f_current ) {
+ index = trinodes.unique_add( *f_current );
+ }
gpc_polygon *gpc_poly;
const_gpcpoly_iterator current, last;
if (gpc_poly->num_contours > 1 ) {
cout << "FATAL ERROR! no multi-contour support" << endl;
- sleep(5);
+ sleep(2);
// exit(-1);
}
<< polylist[i].size() << endl;
}
}
- return 0;
-}
+ // traverse the polygon lists and build the segment (edge) list
+ // that is used by the "Triangle" lib.
-// do actual triangulation
-int FGTriangle::do_triangulate( const FGTriPoly& poly ) {
- trinode_list node_list;
- struct triangulateio in, out;
- int counter;
-
- // define input points
- node_list = trinodes.get_node_list();
+ FGTriPoly poly;
+ int i1, i2;
+ for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
+ cout << "area type = " << i << endl;
+ tripoly_list_iterator tp_current, tp_last;
+ tp_current = polylist[i].begin();
+ tp_last = polylist[i].end();
- in.numberofpoints = node_list.size();
- in.numberofpointattributes = 0;
- in.pointlist = (REAL *) malloc(in.numberofpoints * 2 * sizeof(REAL));
+ // process each polygon in list
+ for ( ; tp_current != tp_last; ++tp_current ) {
+ poly = *tp_current;
- trinode_list_iterator current, last;
- current = node_list.begin();
- last = node_list.end();
- counter = 0;
- for ( ; current != last; ++current ) {
- in.pointlist[counter++] = current->x();
- in.pointlist[counter++] = current->y();
+ for ( int j = 0; j < (int)(poly.size()) - 1; ++j ) {
+ i1 = poly.get_pt_index( j );
+ i2 = poly.get_pt_index( j + 1 );
+ trisegs.unique_add( FGTriSeg(i1, i2) );
+ }
+ i1 = poly.get_pt_index( 0 );
+ i2 = poly.get_pt_index( poly.size() - 1 );
+ trisegs.unique_add( FGTriSeg(i1, i2) );
+ }
}
return 0;
// triangulate each of the polygon areas
-int FGTriangle::triangulate() {
+int FGTriangle::run_triangulate() {
FGTriPoly poly;
- struct triangulateio in, out;
-
- trinode_list node_list = trinodes.get_node_list();
+ Point3D p;
+ struct triangulateio in, out, vorout;
+ int counter;
// point list
+ trinode_list node_list = trinodes.get_node_list();
in.numberofpoints = node_list.size();
- in.numberofpointattributes = 1;
in.pointlist = (REAL *) malloc(in.numberofpoints * 2 * sizeof(REAL));
trinode_list_iterator tn_current, tn_last;
tn_current = node_list.begin();
tn_last = node_list.end();
- int counter = 0;
+ counter = 0;
for ( ; tn_current != tn_last; ++tn_current ) {
in.pointlist[counter++] = tn_current->x();
in.pointlist[counter++] = tn_current->y();
}
- in.pointattributelist = (REAL *) NULL;
- in.pointmarkerlist = (int *) NULL;
+ in.numberofpointattributes = 1;
+ in.pointattributelist = (REAL *) malloc(in.numberofpoints *
+ in.numberofpointattributes *
+ sizeof(REAL));
+ for ( int i = 0; i < in.numberofpoints * in.numberofpointattributes; i++) {
+ in.pointattributelist[i] = 0.0;
+ }
+
+ in.pointmarkerlist = (int *) malloc(in.numberofpoints * sizeof(int));
+ for ( int i = 0; i < in.numberofpoints; i++) {
+ in.pointmarkerlist[i] = 0;
+ }
// segment list
- in.numberofsegments = 0;
+ triseg_list seg_list = trisegs.get_seg_list();
+ in.numberofsegments = seg_list.size();
+ in.segmentlist = (int *) malloc(in.numberofsegments * 2 * sizeof(int));
- tripoly_list_iterator tp_current, tp_last;
- for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
- cout << "area type = " << i << endl;
- tp_current = polylist[i].begin();
- tp_last = polylist[i].end();
- for ( ; tp_current != tp_last; ++tp_current ) {
- poly = *tp_current;
- in.numberofsegments += poly.size() + 1;
- }
+ triseg_list_iterator s_current, s_last;
+ s_current = seg_list.begin();
+ s_last = seg_list.end();
+ counter = 0;
+ for ( ; s_current != s_last; ++s_current ) {
+ in.segmentlist[counter++] = s_current->get_n1();
+ in.segmentlist[counter++] = s_current->get_n2();
}
- in.numberofsegments = 0;
+ // hole list (make holes for airport ignore areas)
+ in.numberofholes = polylist[(int)AirportIgnoreArea].size();
+ in.holelist = (REAL *) malloc(in.numberofholes * 2 * sizeof(REAL));
- in.numberofholes = 0;
- in.numberofregions = 1;
- in.regionlist = (REAL *) malloc(in.numberofregions * 4 * sizeof(REAL));
- in.regionlist[0] = 0.5;
- in.regionlist[1] = 5.0;
- in.regionlist[2] = 7.0; /* Regional attribute (for whole mesh). */
- in.regionlist[3] = 0.1; /* Area constraint that will not be used. */
+ tripoly_list_iterator h_current, h_last;
+ h_current = polylist[(int)AirportIgnoreArea].begin();
+ h_last = polylist[(int)AirportIgnoreArea].end();
+ counter = 0;
+ for ( ; h_current != h_last; ++h_current ) {
+ poly = *h_current;
+ p = poly.get_point_inside();
+ in.holelist[counter++] = p.x();
+ in.holelist[counter++] = p.y();
+ }
- /*
- tripoly_list_iterator current, last;
+ // region list
+ in.numberofregions = 0;
for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
- cout << "area type = " << i << endl;
- current = polylist[i].begin();
- last = polylist[i].end();
- for ( ; current != last; ++current ) {
- poly = *current;
- cout << "triangulating a polygon, size = " << poly.size() << endl;
+ in.numberofregions += polylist[i].size();
+ }
- do_triangulate( poly );
+ in.regionlist = (REAL *) malloc(in.numberofregions * 4 * sizeof(REAL));
+ for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) {
+ tripoly_list_iterator h_current, h_last;
+ h_current = polylist[(int)AirportIgnoreArea].begin();
+ h_last = polylist[(int)AirportIgnoreArea].end();
+ counter = 0;
+ for ( ; h_current != h_last; ++h_current ) {
+ poly = *h_current;
+ p = poly.get_point_inside();
+ in.regionlist[counter++] = p.x(); // x coord
+ in.regionlist[counter++] = p.y(); // y coord
+ in.regionlist[counter++] = i; // region attribute
+ in.regionlist[counter++] = -1.0; // area constraint (unused)
}
}
- */
+
+ // prep the output structures
+ out.pointlist = (REAL *) NULL; // Not needed if -N switch used.
+ // Not needed if -N switch used or number of point attributes is zero:
+ out.pointattributelist = (REAL *) NULL;
+ out.pointmarkerlist = (int *) NULL; // Not needed if -N or -B switch used.
+ out.trianglelist = (int *) NULL; // Not needed if -E switch used.
+ // Not needed if -E switch used or number of triangle attributes is zero:
+ out.triangleattributelist = (REAL *) NULL;
+ out.neighborlist = (int *) NULL; // Needed only if -n switch used.
+ // Needed only if segments are output (-p or -c) and -P not used:
+ out.segmentlist = (int *) NULL;
+ // Needed only if segments are output (-p or -c) and -P and -B not used:
+ out.segmentmarkerlist = (int *) NULL;
+ out.edgelist = (int *) NULL; // Needed only if -e switch used.
+ out.edgemarkerlist = (int *) NULL; // Needed if -e used and -B not used.
+
+ vorout.pointlist = (REAL *) NULL; // Needed only if -v switch used.
+ // Needed only if -v switch used and number of attributes is not zero:
+ vorout.pointattributelist = (REAL *) NULL;
+ vorout.edgelist = (int *) NULL; // Needed only if -v switch used.
+ vorout.normlist = (REAL *) NULL; // Needed only if -v switch used.
+
+ // Triangulate the points. Switches are chosen to read and write
+ // a PSLG (p), preserve the convex hull (c), number everything
+ // from zero (z), assign a regional attribute to each element (A),
+ // and produce an edge list (e), and a triangle neighbor list (n).
+
+ triangulate("pczAen", &in, &out, &vorout);
+
+ // TEMPORARY
+ //
+
+ // Write out the triangulated data to files so we can check
+ // visually that things seem reasonable
+
+ FILE *node = fopen("tile.node", "w");
+ fprintf(node, "%d 2 %d 0\n",
+ out.numberofpoints, out.numberofpointattributes);
+ for (int i = 0; i < out.numberofpoints; i++) {
+ fprintf(node, "%d %.6f %.6f %.2f\n",
+ i, out.pointlist[2*i], out.pointlist[2*i + 1], 0.0);
+ }
+ fclose(node);
+
+ FILE *ele = fopen("tile.ele", "w");
+ fprintf(ele, "%d 3 0\n", out.numberoftriangles);
+ for (int i = 0; i < out.numberoftriangles; i++) {
+ fprintf(ele, "%d ", i);
+ for (int j = 0; j < out.numberofcorners; j++) {
+ fprintf(ele, "%d ", out.trianglelist[i * out.numberofcorners + j]);
+ }
+ fprintf(ele, "\n");
+ }
+ fclose(ele);
+
+ // free mem allocated to the "Triangle" structures
+ free(in.pointlist);
+ free(in.pointattributelist);
+ free(in.pointmarkerlist);
+ free(in.regionlist);
+ free(out.pointlist);
+ free(out.pointattributelist);
+ free(out.pointmarkerlist);
+ free(out.trianglelist);
+ free(out.triangleattributelist);
+ // free(out.trianglearealist);
+ free(out.neighborlist);
+ free(out.segmentlist);
+ free(out.segmentmarkerlist);
+ free(out.edgelist);
+ free(out.edgemarkerlist);
+ free(vorout.pointlist);
+ free(vorout.pointattributelist);
+ free(vorout.edgelist);
+ free(vorout.normlist);
+
return 0;
}
// $Log$
+// Revision 1.7 1999/03/20 20:32:55 curt
+// First mostly successful tile triangulation works. There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
// Revision 1.6 1999/03/20 13:22:11 curt
// Added trisegs.[ch]xx tripoly.[ch]xx.
//
#include <vector>
+#include <Array/array.hxx>
#include <Clipper/clipper.hxx>
#include <Math/point3d.hxx>
#include <Polygon/names.hxx>
#include "trinodes.hxx"
#include "tripoly.hxx"
+#include "trisegs.hxx"
FG_USING_STD(vector);
private:
+ // list of nodes
FGTriNodes trinodes;
- tripoly_list polylist[FG_MAX_AREA_TYPES];
+ // list of segments
+ FGTriSegments trisegs;
+
+ // polygon list
+ tripoly_list polylist[FG_MAX_AREA_TYPES];
+
public:
// Constructor and destructor
int add_nodes();
// populate this class based on the specified gpc_polys list
- int build( const FGgpcPolyList& gpc_polys );
-
- // do actual triangulation
- int do_triangulate( const FGTriPoly& poly );
+ int build( const fitnode_list& fit_list, const FGgpcPolyList& gpc_polys );
// front end triangulator for polygon list
- int triangulate();
+ int run_triangulate();
};
// $Log$
+// Revision 1.6 1999/03/20 20:32:56 curt
+// First mostly successful tile triangulation works. There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
// Revision 1.5 1999/03/20 02:21:53 curt
// Continue shaping the code towards triangulation bliss. Added code to
// calculate some point guaranteed to be inside a polygon.
// return size
inline int size() const { return poly.size(); }
+ // return the ith polygon point index
+ inline int get_pt_index( int i ) const { return poly[i]; }
+
// calculate an "arbitrary" point inside this polygon for
// assigning attribute areas
void calc_point_inside( const FGTriNodes& trinodes );
+ inline Point3D get_point_inside() const { return inside; }
};
// $Log$
+// Revision 1.2 1999/03/20 20:32:58 curt
+// First mostly successful tile triangulation works. There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
// Revision 1.1 1999/03/20 13:21:36 curt
// Initial revision.
//
#include "trisegs.hxx"
+// Constructor
+FGTriSegments::FGTriSegments( void ) {
+}
+
+
+// Destructor
+FGTriSegments::~FGTriSegments( void ) {
+}
+
+
+// Add a point to the point list if it doesn't already exist.
+// Returns the index (starting at zero) of the point in the list.
+int FGTriSegments::unique_add( const FGTriSeg& s ) {
+ triseg_list_iterator current, last;
+ int counter = 0;
+
+ cout << s.get_n1() << "," << s.get_n2() << endl;
+
+ // see if point already exists
+ current = seg_list.begin();
+ last = seg_list.end();
+ for ( ; current != last; ++current ) {
+ if ( s == *current ) {
+ cout << "found an existing segment match" << endl;
+ return counter;
+ }
+
+ ++counter;
+ }
+
+ // add to list
+ seg_list.push_back( s );
+
+ return counter;
+}
+
+
// $Log$
+// Revision 1.2 1999/03/20 20:32:59 curt
+// First mostly successful tile triangulation works. There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
// Revision 1.1 1999/03/20 13:21:36 curt
// Initial revision.
//
// a segment is two integer pointers into the node list
class FGTriSeg {
-public:
int n1, n2;
+
+public:
+
+ // Constructor and destructor
+ inline FGTriSeg( void ) { };
+ inline FGTriSeg( int i1, int i2 ) { n1 = i1; n2 = i2; }
+
+ inline ~FGTriSeg( void ) { };
+
+ inline int get_n1() const { return n1; }
+ inline void set_n1( int i ) { n1 = i; }
+ inline int get_n2() const { return n2; }
+ inline void set_n2( int i ) { n2 = i; }
+
+ friend bool operator == (const FGTriSeg& a, const FGTriSeg& b);
+
};
+inline bool operator == (const FGTriSeg& a, const FGTriSeg& b)
+{
+ return ((a.n1 == b.n1) && (a.n2 == b.n2))
+ || ((a.n1 == b.n2) && (a.n2 == b.n1));
+}
+
typedef vector < FGTriSeg > triseg_list;
typedef triseg_list::iterator triseg_list_iterator;
// $Log$
+// Revision 1.2 1999/03/20 20:33:00 curt
+// First mostly successful tile triangulation works. There's plenty of tweaking
+// to do, but we are marching in the right direction.
+//
// Revision 1.1 1999/03/20 13:21:36 curt
// Initial revision.
//