manager( NULL )
{
_type_str = "model";
+ tgt_heading = tgt_altitude = tgt_speed = 0.0;
tgt_roll = roll = tgt_pitch = tgt_yaw = tgt_vs = vs = pitch = 0.0;
bearing = elevation = range = rdot = 0.0;
x_shift = y_shift = rotation = 0.0;
// Now transform to the wgs84 earth centeres system.
Point3D pos2(pos.lon()* SGD_DEGREES_TO_RADIANS,
pos.lat() * SGD_DEGREES_TO_RADIANS,
- pos.elev() * SG_FEET_TO_METER);
+ pos.elev());
Point3D cartPos3D = sgGeodToCart(pos2);
sgdMat4 ecTrans;
sgdMakeCoordMat4(ecTrans, cartPos3D.x(), cartPos3D.y(), cartPos3D.z(),
string pennant_number; // used by carrier objects
string acType; // used by aircraft objects
string company; // used by aircraft objects
+ string TACAN_channel_ID; // used by carrier objects
+ double max_lat; // used by carrier objects
+ double min_lat; // used by carrier objects
+ double max_long; // used by carrier objects
+ double min_long; // used by carrier objects
+
} FGAIModelEntity;
#include "AICarrier.hxx"
-
#include "AIScenario.hxx"
+/** Value of earth radius (meters) */
+#define RADIUS_M SG_EQUATORIAL_RADIUS_M
+
+
FGAICarrier::FGAICarrier(FGAIManager* mgr) : FGAIShip(mgr) {
_type_str = "carrier";
_otype = otCarrier;
+
+
}
FGAICarrier::~FGAICarrier() {
}
+void FGAICarrier::setWind_from_east(double fps) {
+ wind_from_east = fps;
+}
+
+void FGAICarrier::setWind_from_north(double fps) {
+ wind_from_north = fps;
+}
+
+void FGAICarrier::setMaxLat(double deg) {
+ max_lat = fabs(deg);
+}
+
+void FGAICarrier::setMinLat(double deg) {
+ min_lat = fabs(deg);
+}
+
+void FGAICarrier::setMaxLong(double deg) {
+ max_long = fabs(deg);
+}
+
+void FGAICarrier::setMinLong(double deg) {
+ min_long = fabs(deg);
+}
+
void FGAICarrier::setSolidObjects(const list<string>& so) {
solid_objects = so;
}
sign = s;
}
+void FGAICarrier::setTACANChannelID(const string& id) {
+ TACAN_channel_id = id;
+}
+
void FGAICarrier::setFlolsOffset(const Point3D& off) {
flols_off = off;
}
-void FGAICarrier::getVelocityWrtEarth(sgVec3 v) {
- sgCopyVec3(v, vel_wrt_earth );
+void FGAICarrier::getVelocityWrtEarth(sgdVec3 v, sgdVec3 omega, sgdVec3 pivot) {
+ sgdCopyVec3(v, vel_wrt_earth );
+ sgdCopyVec3(omega, rot_wrt_earth );
+ sgdCopyVec3(pivot, rot_pivot_wrt_earth );
}
void FGAICarrier::update(double dt) {
- UpdateFlols(dt);
- FGAIShip::update(dt);
+
+ // For computation of rotation speeds we just use finite differences her.
+ // That is perfectly valid since this thing is not driven by accelerations
+ // but by just apply discrete changes at its velocity variables.
+ double old_hdg = hdg;
+ double old_roll = roll;
+ double old_pitch = pitch;
// Update the velocity information stored in those nodes.
double v_north = 0.51444444*speed*cos(hdg * SGD_DEGREES_TO_RADIANS);
double cos_lat = cos(pos.lat() * SGD_DEGREES_TO_RADIANS);
double sin_lon = sin(pos.lon() * SGD_DEGREES_TO_RADIANS);
double cos_lon = cos(pos.lon() * SGD_DEGREES_TO_RADIANS);
- sgSetVec3( vel_wrt_earth,
+ double sin_roll = sin(roll * SGD_DEGREES_TO_RADIANS);
+ double cos_roll = cos(roll * SGD_DEGREES_TO_RADIANS);
+ double sin_pitch = sin(pitch * SGD_DEGREES_TO_RADIANS);
+ double cos_pitch = cos(pitch * SGD_DEGREES_TO_RADIANS);
+ double sin_hdg = sin(hdg * SGD_DEGREES_TO_RADIANS);
+ double cos_hdg = cos(hdg * SGD_DEGREES_TO_RADIANS);
+
+ // Transform this back the the horizontal local frame.
+ sgdMat3 trans;
+
+ // set up the transform matrix
+ trans[0][0] = cos_pitch*cos_hdg;
+ trans[0][1] = sin_roll*sin_pitch*cos_hdg - cos_roll*sin_hdg;
+ trans[0][2] = cos_roll*sin_pitch*cos_hdg + sin_roll*sin_hdg;
+
+ trans[1][0] = cos_pitch*sin_hdg;
+ trans[1][1] = sin_roll*sin_pitch*sin_hdg + cos_roll*cos_hdg;
+ trans[1][2] = cos_roll*sin_pitch*sin_hdg - sin_roll*cos_hdg;
+
+ trans[2][0] = -sin_pitch;
+ trans[2][1] = sin_roll*cos_pitch;
+ trans[2][2] = cos_roll*cos_pitch;
+
+ sgdSetVec3( vel_wrt_earth,
- cos_lon*sin_lat*v_north - sin_lon*v_east,
- sin_lon*sin_lat*v_north + cos_lon*v_east,
cos_lat*v_north );
+ sgGeodToCart(pos.lat() * SGD_DEGREES_TO_RADIANS,
+ pos.lon() * SGD_DEGREES_TO_RADIANS,
+ pos.elev(), rot_pivot_wrt_earth);
-}
+ // Now update the position and heading. This will compute new hdg and
+ // roll values required for the rotation speed computation.
+ FGAIShip::update(dt);
+
+
+ //automatic turn into wind with a target wind of 25 kts otd
+ if(turn_to_launch_hdg){
+ TurnToLaunch();
+ } else if(OutsideBox() || returning) {// check that the carrier is inside the operating box
+ ReturnToBox();
+ } else { //if(!returning
+ TurnToBase();
+ } //end if
+
+ // Only change these values if we are able to compute them safely
+ if (dt < DBL_MIN)
+ sgdSetVec3( rot_wrt_earth, 0.0, 0.0, 0.0);
+ else {
+ // Compute the change of the euler angles.
+ double hdg_dot = SGD_DEGREES_TO_RADIANS * (hdg-old_hdg)/dt;
+ // Allways assume that the movement was done by the shorter way.
+ if (hdg_dot < - SGD_DEGREES_TO_RADIANS * 180)
+ hdg_dot += SGD_DEGREES_TO_RADIANS * 360;
+ if (hdg_dot > SGD_DEGREES_TO_RADIANS * 180)
+ hdg_dot -= SGD_DEGREES_TO_RADIANS * 360;
+ double pitch_dot = SGD_DEGREES_TO_RADIANS * (pitch-old_pitch)/dt;
+ // Allways assume that the movement was done by the shorter way.
+ if (pitch_dot < - SGD_DEGREES_TO_RADIANS * 180)
+ pitch_dot += SGD_DEGREES_TO_RADIANS * 360;
+ if (pitch_dot > SGD_DEGREES_TO_RADIANS * 180)
+ pitch_dot -= SGD_DEGREES_TO_RADIANS * 360;
+ double roll_dot = SGD_DEGREES_TO_RADIANS * (roll-old_roll)/dt;
+ // Allways assume that the movement was done by the shorter way.
+ if (roll_dot < - SGD_DEGREES_TO_RADIANS * 180)
+ roll_dot += SGD_DEGREES_TO_RADIANS * 360;
+ if (roll_dot > SGD_DEGREES_TO_RADIANS * 180)
+ roll_dot -= SGD_DEGREES_TO_RADIANS * 360;
+ /*cout << "euler derivatives = "
+ << roll_dot << " " << pitch_dot << " " << hdg_dot << endl;*/
+
+ // Now Compute the rotation vector in the carriers coordinate frame
+ // originating from the euler angle changes.
+ sgdVec3 body;
+ body[0] = roll_dot - hdg_dot*sin_pitch;
+ body[1] = pitch_dot*cos_roll + hdg_dot*sin_roll*cos_pitch;
+ body[2] = -pitch_dot*sin_roll + hdg_dot*cos_roll*cos_pitch;
+
+ // Transform that back to the horizontal local frame.
+ sgdVec3 hl;
+ hl[0] = body[0]*trans[0][0] + body[1]*trans[0][1] + body[2]*trans[0][2];
+ hl[1] = body[0]*trans[1][0] + body[1]*trans[1][1] + body[2]*trans[1][2];
+ hl[2] = body[0]*trans[2][0] + body[1]*trans[2][1] + body[2]*trans[2][2];
+
+ // Now we need to project out rotation components ending in speeds in y
+ // direction in the hoirizontal local frame.
+ hl[1] = 0;
+
+ // Transform that to the earth centered frame.
+ sgdSetVec3(rot_wrt_earth,
+ - cos_lon*sin_lat*hl[0] - sin_lon*hl[1] - cos_lat*cos_lon*hl[2],
+ - sin_lon*sin_lat*hl[0] + cos_lon*hl[1] - cos_lat*sin_lon*hl[2],
+ cos_lat*hl[0] - sin_lat*hl[2]);
+ }
+
+ UpdateWind(dt);
+ UpdateTACAN(dt);
+ UpdateFlols(trans);
+} //end update
bool FGAICarrier::init() {
if (!FGAIShip::init())
mark_cat(sel, catapult_objects);
mark_solid(sel, solid_objects);
+ _longitude_node = fgGetNode("/position/longitude-deg", true);
+ _latitude_node = fgGetNode("/position/latitude-deg", true);
+ _altitude_node = fgGetNode("/position/altitude-ft", true);
+ _dme_freq_node = fgGetNode("/instrumentation/dme/frequencies/selected-mhz", true);
+ _surface_wind_from_deg_node =
+ fgGetNode("/environment/config/boundary/entry[0]/wind-from-heading-deg", true);
+ _surface_wind_speed_node =
+ fgGetNode("/environment/config/boundary/entry[0]/wind-speed-kt", true);
+
+
+ turn_to_launch_hdg = false;
+ returning = false;
+
+ initialpos = pos;
+ base_course = hdg;
+ base_speed = speed;
+
return true;
}
void FGAICarrier::bind() {
FGAIShip::bind();
+ props->untie("velocities/true-airspeed-kt");
+
props->tie("controls/flols/source-lights",
SGRawValuePointer<int>(&source));
props->tie("controls/flols/distance-m",
SGRawValuePointer<double>(&dist));
props->tie("controls/flols/angle-degs",
SGRawValuePointer<double>(&angle));
+ props->tie("controls/turn-to-launch-hdg",
+ SGRawValuePointer<bool>(&turn_to_launch_hdg));
+ props->tie("controls/in-to-wind",
+ SGRawValuePointer<bool>(&turn_to_launch_hdg));
+ props->tie("controls/base-course-deg",
+ SGRawValuePointer<double>(&base_course));
+ props->tie("controls/base-speed-kts",
+ SGRawValuePointer<double>(&base_speed));
+ props->tie("controls/start-pos-lat-deg",
+ SGRawValuePointer<double>(&initialpos[1]));
+ props->tie("controls/start-pos-long-deg",
+ SGRawValuePointer<double>(&initialpos[0]));
+ props->tie("velocities/speed-kts",
+ SGRawValuePointer<double>(&speed));
+ props->tie("environment/surface-wind-speed-true-kts",
+ SGRawValuePointer<double>(&wind_speed_kts));
+ props->tie("environment/surface-wind-from-true-degs",
+ SGRawValuePointer<double>(&wind_from_deg));
+ props->tie("environment/rel-wind-from-degs",
+ SGRawValuePointer<double>(&rel_wind_from_deg));
+ props->tie("environment/rel-wind-from-carrier-hdg-degs",
+ SGRawValuePointer<double>(&rel_wind));
+ props->tie("environment/rel-wind-speed-kts",
+ SGRawValuePointer<double>(&rel_wind_speed_kts));
+ props->tie("controls/flols/wave-off-lights",
+ SGRawValuePointer<bool>(&wave_off_lights));
+ props->tie("instrumentation/TACAN/bearing-true-deg",
+ SGRawValuePointer<double>(&bearing));
+ props->tie("instrumentation/TACAN/range-nm",
+ SGRawValuePointer<double>(&range));
+
props->setBoolValue("controls/flols/cut-lights", false);
props->setBoolValue("controls/flols/wave-off-lights", false);
props->setBoolValue("controls/flols/cond-datum-lights", true);
props->setBoolValue("controls/crew", false);
+ props->setStringValue("instrumentation/TACAN/channel-ID", TACAN_channel_id.c_str());
+
props->setStringValue("sign", sign.c_str());
}
void FGAICarrier::unbind() {
FGAIShip::unbind();
+
+ props->untie("velocities/true-airspeed-kt");
+
props->untie("controls/flols/source-lights");
props->untie("controls/flols/distance-m");
props->untie("controls/flols/angle-degs");
+ props->untie("controls/turn-to-launch-hdg");
+ props->untie("velocities/speed-kts");
+ props->untie("environment/wind-speed-true-kts");
+ props->untie("environment/wind-from-true-degs");
+ props->untie("environment/rel-wind-from-degs");
+ props->untie("environment/rel-wind-speed-kts");
+ props->untie("controls/flols/wave-off-lights");
+ props->untie("instrumentation/TACAN/bearing-true-deg");
+ props->untie("instrumentation/TACAN/range-nm");
+ props->untie("instrumentation/TACAN/channel-ID");
}
bool FGAICarrier::getParkPosition(const string& id, Point3D& geodPos,
double& hdng, sgdVec3 uvw)
{
+
+ // FIXME: does not yet cover rotation speeds.
list<ParkPosition>::iterator it = ppositions.begin();
while (it != ppositions.end()) {
// Take either the specified one or the first one ...
return found;
}
-void FGAICarrier::UpdateFlols( double dt) {
+void FGAICarrier::UpdateFlols(sgdMat3 trans) {
- float trans[3][3];
float in[3];
float out[3];
- float cosRx, sinRx;
- float cosRy, sinRy;
- float cosRz, sinRz;
-
double flolsXYZ[3], eyeXYZ[3];
double lat, lon, alt;
Point3D eyepos;
in[1] = flols_off.y();
in[2] = flols_off.z();
-// pre-process the trig functions
-
- cosRx = cos(roll * SG_DEGREES_TO_RADIANS);
- sinRx = sin(roll * SG_DEGREES_TO_RADIANS);
- cosRy = cos(pitch * SG_DEGREES_TO_RADIANS);
- sinRy = sin(pitch * SG_DEGREES_TO_RADIANS);
- cosRz = cos(hdg * SG_DEGREES_TO_RADIANS);
- sinRz = sin(hdg * SG_DEGREES_TO_RADIANS);
-
-// set up the transform matrix
-
- trans[0][0] = cosRy * cosRz;
- trans[0][1] = -1 * cosRx * sinRz + sinRx * sinRy * cosRz ;
- trans[0][2] = sinRx * sinRz + cosRx * sinRy * cosRz;
-
- trans[1][0] = cosRy * sinRz;
- trans[1][1] = cosRx * cosRz + sinRx * sinRy * sinRz;
- trans[1][2] = -1 * sinRx * cosRx + cosRx * sinRy * sinRz;
-
- trans[2][0] = -1 * sinRy;
- trans[2][1] = sinRx * cosRy;
- trans[2][2] = cosRx * cosRy;
-
// multiply the input and transform matrices
out[0] = in[0] * trans[0][0] + in[1] * trans[0][1] + in[2] * trans[0][2];
}
} // end updateflols
+// find relative wind
+
+
+
+
+void FGAICarrier::UpdateWind( double dt) {
+
+ double recip;
+
+ //calculate the reciprocal hdg
+
+ if (hdg >= 180){
+ recip = hdg - 180;
+ }
+ else{
+ recip = hdg + 180;
+ }
+
+ //cout <<" heading: " << hdg << "recip: " << recip << endl;
+
+ //get the surface wind speed and direction
+ wind_from_deg = _surface_wind_from_deg_node->getDoubleValue();
+ wind_speed_kts = _surface_wind_speed_node->getDoubleValue();
+
+ //calculate the surface wind speed north and east in kts
+ double wind_speed_from_north_kts = cos( wind_from_deg / SGD_RADIANS_TO_DEGREES )* wind_speed_kts ;
+ double wind_speed_from_east_kts = sin( wind_from_deg / SGD_RADIANS_TO_DEGREES )* wind_speed_kts ;
+
+ //calculate the carrier speed north and east in kts
+ double speed_north_kts = cos( hdg / SGD_RADIANS_TO_DEGREES )* speed ;
+ double speed_east_kts = sin( hdg / SGD_RADIANS_TO_DEGREES )* speed ;
+
+ //calculate the relative wind speed north and east in kts
+ double rel_wind_speed_from_east_kts = wind_speed_from_east_kts + speed_east_kts;
+ double rel_wind_speed_from_north_kts = wind_speed_from_north_kts + speed_north_kts;
+
+ //combine relative speeds north and east to get relative windspeed in kts
+ rel_wind_speed_kts = sqrt((rel_wind_speed_from_east_kts * rel_wind_speed_from_east_kts)
+ + (rel_wind_speed_from_north_kts * rel_wind_speed_from_north_kts));
+
+ //calculate the relative wind direction
+ rel_wind_from_deg = atan(rel_wind_speed_from_east_kts/rel_wind_speed_from_north_kts)
+ * SG_RADIANS_TO_DEGREES;
+
+ // rationalise the output
+ if (rel_wind_speed_from_north_kts <= 0){
+ rel_wind_from_deg = 180 + rel_wind_from_deg;
+ }
+ else{
+ if(rel_wind_speed_from_east_kts <= 0){
+ rel_wind_from_deg = 360 + rel_wind_from_deg;
+ }
+ }
+
+ //calculate rel wind
+ rel_wind = rel_wind_from_deg - hdg ;
+ if (rel_wind > 180) rel_wind -= 360;
+
+ //switch the wave-off lights
+ if (InToWind()){
+ wave_off_lights = false;
+ }else{
+ wave_off_lights = true;
+ }
+
+ cout << "rel wind: " << rel_wind << endl;
+
+}// end update wind
+
+void FGAICarrier::TurnToLaunch(){
+
+ //calculate tgt speed
+ double tgt_speed = 25 - wind_speed_kts;
+ if (tgt_speed < 10) tgt_speed = 10;
+
+ //turn the carrier
+ FGAIShip::TurnTo(wind_from_deg);
+ FGAIShip::AccelTo(tgt_speed);
+
+
+
+} // end turn to launch
+
+void FGAICarrier::TurnToBase(){
+
+ //turn the carrier
+ FGAIShip::TurnTo(base_course);
+ FGAIShip::AccelTo(base_speed);
+
+} // end turn to base
+
+void FGAICarrier::ReturnToBox(){
+ double course, distance;
+
+ //get the carrier position
+ carrierpos = pos;
+
+ //cout << "lat: " << carrierpos[1] << " lon: " << carrierpos[0] << endl;
+
+ //calculate the bearing and range of the initial position from the carrier
+ geo_inverse_wgs_84(carrierpos[2],
+ carrierpos[1],
+ carrierpos[0],
+ initialpos[1],
+ initialpos[0],
+ &course, &az2, &distance);
+
+ distance *= SG_METER_TO_NM;
+
+ cout << "return course: " << course << " distance: " << distance << endl;
+ //turn the carrier
+ FGAIShip::TurnTo(course);
+ FGAIShip::AccelTo(base_speed);
+ if (distance >= 1 ){
+ returning = true;
+ }else{
+ returning = false;
+ }
+
+} // end turn to base
+
+
+void FGAICarrier::UpdateTACAN(double dt){ //update the TACAN
+
+ //cout << "TACAN: " << TACAN_channel_id << endl;
+
+ double max_range_nm = 100; //nm
+
+ double dme_freq = _dme_freq_node->getDoubleValue();
+
+ //cout << "dme_freq: " << dme_freq << endl;
+
+ if (TACAN_channel_id == "017X"){
+
+ //get the aircraft position
+ double longitude_deg = _longitude_node->getDoubleValue();
+ double latitude_deg = _latitude_node->getDoubleValue();
+ double altitude_m = _altitude_node->getDoubleValue() * SG_FEET_TO_METER;
+
+ //get the carrier position
+ carrierpos = pos;
+
+ //cout << "lat: " << carrierpos[1] << " lon: " << carrierpos[0] << endl;
+
+ //calculate the bearing and range of the carrier from the aircraft
+ geo_inverse_wgs_84(altitude_m,
+ latitude_deg,
+ longitude_deg,
+ carrierpos[1],
+ carrierpos[0],
+ &bearing, &az2, &range);
+
+ range *= SG_METER_TO_NM;
+
+
+
+ double aircraft_horizon_nm = Horizon(altitude_m) * SG_METER_TO_NM;
+ double carrier_horizon_nm = Horizon(50) * SG_METER_TO_NM;
+ double horizon_nm = aircraft_horizon_nm + carrier_horizon_nm;
+
+ if (range > horizon_nm || range > max_range_nm) {
+ range = 0;
+ bearing = 0 ;
+ }
+ /*cout << "bearing: " << bearing << " range: " << range << " altitude: " << altitude_m
+ << " horizon: " << horizon_nm << endl; */
+ } else {
+ range = 0;
+ bearing = 0 ;
+ } // end if
+
+}// end update TACAN
+
+bool FGAICarrier::OutsideBox(){ //returns true if the carrier is outside operating box
+
+ if ( max_lat == 0 && min_lat == 0 && max_long == 0 && min_long == 0) {
+ SG_LOG(SG_GENERAL, SG_INFO,"AICarrier: No Operating Box defined" );
+ return false;
+ }
+
+ if (initialpos[1] >= 0){//northern hemisphere
+ if (pos[1] >= initialpos[1] + max_lat) {return true;}
+ else if (pos[1] <= initialpos[1] - min_lat) {return true;}
+ }else{ //southern hemisphere
+ if (pos[1] <= initialpos[1] - max_lat) {return true;}
+ else if (pos[1] >= initialpos[1] + min_lat) {return true;}
+ }
+
+ if (initialpos[0] >=0) {//eastern hemisphere
+ if (pos[0] >= initialpos[0] + max_long) {return true;}
+ else if (pos[0] <= initialpos[0] - min_long) {return true;}
+ }else{ //western hemisphere
+ if (pos[0] <= initialpos[0] - max_long) {return true;}
+ else if (pos[0] >= initialpos[0] + min_long) {return true;}
+ }
+
+ SG_LOG(SG_GENERAL, SG_INFO,"AICarrier: Inside Operating Box" );
+
+ return false;
+
+} // end OutsideBox
+
+// return the distance to the horizon, given the altitude and the radius of the earth
+float FGAICarrier::Horizon(float h) { return RADIUS_M * acos(RADIUS_M / (RADIUS_M + h)); }
+
+bool FGAICarrier::InToWind(){
+
+ // test
+ if ( fabs(rel_wind) < 5 ) return true;
+ return false;
+
+} //end InToWind
int FGAICarrierHardware::unique_id = 1;
SG_USING_STD(list);
#include "AIShip.hxx"
+
+#include "AIManager.hxx"
+#include "AIBase.hxx"
+
class FGAIManager;
class FGAICarrier;
void setParkingPositions(const list<ParkPosition>& p);
void setSign(const string& );
void setFlolsOffset(const Point3D& off);
+ void setTACANChannelID(const string &);
- void getVelocityWrtEarth(sgVec3 v);
+ void getVelocityWrtEarth(sgdVec3 v, sgdVec3 omega, sgdVec3 pivot);
virtual void bind();
virtual void unbind();
- void UpdateFlols ( double dt );
+ void UpdateFlols ( sgdMat3 trans );
+ void UpdateWind ( double dt );
+ void UpdateTACAN( double dt );
+ void setWind_from_east( double fps );
+ void setWind_from_north( double fps );
+ void setMaxLat( double deg );
+ void setMinLat( double deg );
+ void setMaxLong( double deg );
+ void setMinLong( double deg );
+ void TurnToLaunch();
+ void TurnToBase();
+ void ReturnToBox();
+ float Horizon(float h);
+ double TACAN_freq;
+ bool OutsideBox();
+
bool init();
void update(double dt);
void mark_nohot(ssgEntity*);
+
bool mark_wires(ssgEntity*, const list<string>&, bool = false);
bool mark_cat(ssgEntity*, const list<string>&, bool = false);
bool mark_solid(ssgEntity*, const list<string>&, bool = false);
+ double wind_from_east; // fps
+ double wind_from_north; // fps
+ double rel_wind_speed_kts;
+ double rel_wind_from_deg;
+
list<string> solid_objects; // List of solid object names
list<string> wire_objects; // List of wire object names
string sign; // The sign of this carrier.
// Velocity wrt earth.
- sgVec3 vel_wrt_earth;
+ sgdVec3 vel_wrt_earth;
+ sgdVec3 rot_wrt_earth;
+ sgdVec3 rot_pivot_wrt_earth;
+
// these describe the flols
Point3D flols_off;
double dist; // the distance of the eyepoint from the flols
double angle;
int source; // the flols light which is visible at the moment
+ bool wave_off_lights;
+
+ // these are for manoeuvring the carrier
+ Point3D carrierpos;
+ Point3D initialpos;
+
+ double wind_speed_from_north_kts ;
+ double wind_speed_from_east_kts ;
+ double wind_speed_kts; //true wind speed
+ double wind_from_deg; //true wind direction
+ double rel_wind;
+ double max_lat, min_lat, max_long, min_long;
+ double base_course, base_speed;
+
+ bool turn_to_launch_hdg;
+ bool returning; // set if the carrier is returning to an operating box
+ bool InToWind(); // set if the carrier is in to wind
+ SGPropertyNode_ptr _longitude_node;
+ SGPropertyNode_ptr _latitude_node;
+ SGPropertyNode_ptr _altitude_node;
+ SGPropertyNode_ptr _surface_wind_from_deg_node;
+ SGPropertyNode_ptr _surface_wind_speed_node;
+
+ // these are for TACAN
+ SGPropertyNode_ptr _dme_freq_node;
+
+ double bearing, az2, range;
+ string TACAN_channel_id;
+
+
};
#endif // _FG_AICARRIER_HXX
return;
wind_from_down_node = fgGetNode("/environment/wind-from-down-fps", true);
+ wind_from_east_node = fgGetNode("/environment/wind-from-east-fps",true);
+ wind_from_north_node = fgGetNode("/environment/wind-from-north-fps",true);
+
user_latitude_node = fgGetNode("/position/latitude-deg", true);
user_longitude_node = fgGetNode("/position/longitude-deg", true);
user_altitude_node = fgGetNode("/position/altitude-ft", true);
ai_ship->setAltitude(entity->altitude);
ai_ship->setLongitude(entity->longitude);
ai_ship->setLatitude(entity->latitude);
- ai_ship->setBank(entity->rudder);
+ ai_ship->setRudder(entity->rudder);
ai_ship->setName(entity->name);
if ( entity->fp ) {
ai_carrier->setAltitude(entity->altitude);
ai_carrier->setLongitude(entity->longitude);
ai_carrier->setLatitude(entity->latitude);
- ai_carrier->setBank(entity->rudder);
+ ai_carrier->setRudder(entity->rudder);
ai_carrier->setSolidObjects(entity->solid_objects);
ai_carrier->setWireObjects(entity->wire_objects);
ai_carrier->setCatapultObjects(entity->catapult_objects);
ai_carrier->setSign(entity->pennant_number);
ai_carrier->setName(entity->name);
ai_carrier->setFlolsOffset(entity->flols_offset);
+ ai_carrier->setWind_from_east(entity->wind_from_east);
+ ai_carrier->setWind_from_north(entity->wind_from_north);
+ ai_carrier->setTACANChannelID(entity->TACAN_channel_ID);
+ ai_carrier->setMaxLat(entity->max_lat);
+ ai_carrier->setMinLat(entity->min_lat);
+ ai_carrier->setMaxLong(entity->max_long);
+ ai_carrier->setMinLong(entity->min_long);
+
if ( entity->fp ) {
ai_carrier->setFlightPlan(entity->fp);
user_pitch = user_pitch_node->getDoubleValue();
user_yaw = user_yaw_node->getDoubleValue();
user_speed = user_speed_node->getDoubleValue() * 0.592484;
+ wind_from_east = wind_from_east_node->getDoubleValue();
+ wind_from_north = wind_from_north_node->getDoubleValue();
+
+
}
ai_carrier->setLatitude(en->latitude);
ai_carrier->setBank(en->rudder);
ai_carrier->setParkingPositions(en->ppositions);
+ ai_carrier->setWind_from_east(en->wind_from_east);
+ ai_carrier->setWind_from_north(en->wind_from_north);
+ //ai_carrier->setTACANFreq(en->TACAN_freq);
if (ai_carrier->getParkPosition(pid, geodPos, heading, uvw)) {
delete ai_carrier;
inline double get_user_pitch() { return user_pitch; }
inline double get_user_yaw() { return user_yaw; }
inline double get_user_speed() {return user_speed; }
+ inline double get_wind_from_east() {return wind_from_east; }
+ inline double get_wind_from_north() {return wind_from_north; }
inline int getNum( FGAIBase::object_type ot ) {
return (0 < ot && ot < FGAIBase::MAX_OBJECTS) ? numObjects[ot] : numObjects[0];
SGPropertyNode* user_pitch_node;
SGPropertyNode* user_yaw_node;
SGPropertyNode* user_speed_node;
+ SGPropertyNode* wind_from_east_node ;
+ SGPropertyNode* wind_from_north_node ;
string scenario_filename;
double user_pitch;
double user_yaw;
double user_speed;
+ double wind_from_east;
+ double wind_from_north;
double _dt;
int dt_count;
void fetchUserState( void );
path.append( ("/Data/AI/" + filename + ".xml").c_str() );
SGPropertyNode root;
+ readProperties(path.str(), &root);
// cout <<"path " << path.str() << endl;
en->roll = entry_node->getDoubleValue("roll", 0.0);
en->azimuth = entry_node->getDoubleValue("azimuth", 0.0);
en->elevation = entry_node->getDoubleValue("elevation", 0.0);
- en->rudder = entry_node->getDoubleValue("rudder", 0.0);
+ en->rudder = entry_node->getFloatValue("rudder", 0.0);
en->strength = entry_node->getDoubleValue("strength-fps", 8.0);
en->strength = entry_node->getDoubleValue("strength-norm", 1.0);
en->diameter = entry_node->getDoubleValue("diameter-ft", 0.0);
en->cd = entry_node->getDoubleValue("cd", 0.029);
en->mass = entry_node->getDoubleValue("mass", 0.007);
en->radius = entry_node->getDoubleValue("turn-radius-ft", 2000);
+ en->TACAN_channel_ID= entry_node->getStringValue("TACAN-channel-ID", "017X");
en->name = entry_node->getStringValue("name", "");
en->pennant_number = entry_node->getStringValue("pennant-number", "");
en->wire_objects = getAllStringNodeVals("wire", entry_node);
en->catapult_objects = getAllStringNodeVals("catapult", entry_node);
en->solid_objects = getAllStringNodeVals("solid", entry_node);
en->ppositions = getAllOffsetNodeVals("parking-pos", entry_node);
+ en->max_lat = entry_node->getDoubleValue("max-lat", 0);
+ en->min_lat = entry_node->getDoubleValue("min-lat",0);
+ en->max_long = entry_node->getDoubleValue("max-long", 0);
+ en->min_long = entry_node->getDoubleValue("min-long", 0);
list<ParkPosition> flolspos = getAllOffsetNodeVals("flols-pos", entry_node);
en->flols_offset = flolspos.front().offset;
_type_str = "ship";
_otype = otShip;
- hdg_lock = false;
- rudder = 0.0;
}
FGAIShip::~FGAIShip() {
bool FGAIShip::init() {
+
+ hdg_lock = false;
+ rudder = 0.0;
+ no_roll = false;
+
+ rudder_constant = 0.5;
+ roll_constant = 0.001;
+ speed_constant = 0.05;
+ hdg_constant = 0.01;
+
return FGAIBase::init();
}
FGAIBase::bind();
props->tie("surface-positions/rudder-pos-deg",
- SGRawValuePointer<double>(&rudder));
+ SGRawValuePointer<float>(&rudder));
+ props->tie("controls/heading-lock",
+ SGRawValuePointer<bool>(&hdg_lock));
+ props->tie("controls/tgt-speed-kts",
+ SGRawValuePointer<double>(&tgt_speed));
+ props->tie("controls/tgt-heading-degs",
+ SGRawValuePointer<double>(&tgt_heading));
+ props->tie("controls/constants/rudder",
+ SGRawValuePointer<double>(&rudder_constant));
+ props->tie("controls/constants/roll",
+ SGRawValuePointer<double>(&roll_constant));
+ props->tie("controls/constants/rudder",
+ SGRawValuePointer<double>(&rudder_constant));
+ props->tie("controls/constants/speed",
+ SGRawValuePointer<double>(&speed_constant));
props->setStringValue("name", name.c_str());
}
void FGAIShip::unbind() {
FGAIBase::unbind();
props->untie("surface-positions/rudder-pos-deg");
+ props->untie("controls/heading-lock");
+ props->untie("controls/tgt-speed-kts");
+ props->untie("controls/tgt-heading-degs");
+ props->untie("controls/constants/roll");
+ props->untie("controls/constants/rudder");
+ props->untie("controls/constants/speed");
+
}
void FGAIShip::update(double dt) {
double speed_east_deg_sec;
double dist_covered_ft;
double alpha;
+ double rudder_limit;
+ double raw_roll;
// adjust speed
double speed_diff = tgt_speed - speed;
if (fabs(speed_diff) > 0.1) {
- if (speed_diff > 0.0) speed += 0.1 * dt;
- if (speed_diff < 0.0) speed -= 0.1 * dt;
+ if (speed_diff > 0.0) speed += speed_constant * dt;
+ if (speed_diff < 0.0) speed -= speed_constant * dt;
}
// convert speed to degrees per second
// adjust heading based on current rudder angle
- if (rudder != 0.0) {
+ if (rudder <= -0.25 or rudder >= 0.25) {
/* turn_radius_ft = 0.088362 * speed * speed
/ tan( fabs(rudder) / SG_RADIANS_TO_DEGREES );
turn_circum_ft = SGD_2PI * turn_radius_ft;
alpha = dist_covered_ft / turn_circum_ft * 360.0;*/
if (turn_radius_ft <= 0) turn_radius_ft = 0; // don't allow nonsense values
-
-// cout << "speed " << speed << " turn radius " << turn_radius_ft << endl;
+ if (rudder > 45) rudder = 45;
+ if (rudder < -45) rudder = -45;
// adjust turn radius for speed. The equation is very approximate.
sp_turn_radius_ft = 10 * pow ((speed - 15),2) + turn_radius_ft;
-// cout << "speed " << speed << " speed turn radius " << sp_turn_radius_ft << endl;
+// cout << " speed turn radius " << sp_turn_radius_ft ;
// adjust turn radius for rudder angle. The equation is even more approximate.
- rd_turn_radius_ft = -130 * (rudder - 15) + sp_turn_radius_ft;
-// cout << "rudder " << rudder << " rudder turn radius " << rd_turn_radius_ft << endl;
+ float a = 19;
+ float b = -0.2485;
+ float c = 0.543;
+
+ rd_turn_radius_ft = (a * exp(b * fabs(rudder)) + c) * sp_turn_radius_ft;
+
+// cout <<" rudder turn radius " << rd_turn_radius_ft << endl;
// calculate the angle, alpha, subtended by the arc traversed in time dt
alpha = ((speed * 1.686 * dt)/rd_turn_radius_ft) * SG_RADIANS_TO_DEGREES;
-// make sure that alpha is applied in the right direction
+// make sure that alpha is applied in the right direction
hdg += alpha * sign( rudder );
-
if ( hdg > 360.0 ) hdg -= 360.0;
if ( hdg < 0.0) hdg += 360.0;
-//adjust roll for rudder angle and speed
- roll = - ( speed / 2 - rudder / 6 );
-
-// cout << " hdg " << hdg << "roll "<< roll << endl;
+//adjust roll for rudder angle and speed. Another bit of voodoo
+ raw_roll = -0.0166667 * speed * rudder;
+ }
+ else
+ {
+// rudder angle is 0
+ raw_roll = 0;
+// cout << " roll "<< roll << endl;
}
+ //low pass filter
+ roll = (raw_roll * roll_constant) + (roll * (1 - roll_constant));
+
+ cout << " rudder: " << rudder << " raw roll: "<< raw_roll<<" roll: " << roll ;
+ cout << " hdg: " << hdg << endl ;
+
// adjust target rudder angle if heading lock engaged
if (hdg_lock) {
double rudder_sense = 0.0;
} else {
rudder_sense = -1.0;
}
- if (diff < 30) tgt_roll = diff * rudder_sense;
+ if (diff < 15){
+ tgt_rudder = diff * rudder_sense;
+ }
+ else
+ {
+ tgt_rudder = 45 * rudder_sense;
+ }
}
// adjust rudder angle
- double rudder_diff = tgt_roll - rudder;
- if (fabs(rudder_diff) > 0.1) {
- if (rudder_diff > 0.0) rudder += 5.0 * dt;
- if (rudder_diff < 0.0) rudder -= 5.0 * dt;
+ double rudder_diff = tgt_rudder - rudder;
+ // set the rudder limit by speed
+ if (speed <= 40 ){
+ rudder_limit = (-0.825 * speed) + 35;
+ }else{
+ rudder_limit = 2;
}
+ if (fabs(rudder_diff) > 0.1) {
+ if (rudder_diff > 0.0){
+ rudder += rudder_constant * dt;
+ if (rudder > rudder_limit) rudder = rudder_limit;// apply the rudder limit
+ } else if (rudder_diff < 0.0){
+ rudder -= rudder_constant * dt;
+ if (rudder < -rudder_limit) rudder = -rudder_limit;
+ }
}
+
+}//end function
+
+
void FGAIShip::AccelTo(double speed) {
tgt_speed = speed;
}
-
void FGAIShip::PitchTo(double angle) {
tgt_pitch = angle;
}
// not implemented yet
}
+void FGAIShip::setRudder(float r) {
+ rudder = r;
+}
+
+void FGAIShip::setRoll(double rl) {
+ roll = rl;
+}
void update(double dt);
void setFlightPlan(FGAIFlightPlan* f);
void setName(const string&);
+ void setRudder(float r);
+ void setRoll(double rl);
+
void ProcessFlightPlan( double dt );
void AccelTo(double speed);
void YawTo(double angle);
void ClimbTo(double altitude);
void TurnTo(double heading);
+ bool hdg_lock;
protected:
private:
- bool hdg_lock;
- double rudder;
+ float rudder, tgt_rudder;
+ double rudder_constant, roll_constant, speed_constant, hdg_constant;
void Run(double dt);
double sign(double x);
}
// Copy the velocity from the carrier class.
- ud->carrier->getVelocityWrtEarth( gp.vel );
+ ud->carrier->getVelocityWrtEarth( gp.vel, gp.rot, gp.pivot );
}
else {
// Initialize velocity field.
- sgSetVec3( gp.vel, 0.0, 0.0, 0.0 );
+ sgdSetVec3( gp.vel, 0.0, 0.0, 0.0 );
+ sgdSetVec3( gp.rot, 0.0, 0.0, 0.0 );
+ sgdSetVec3( gp.pivot, 0.0, 0.0, 0.0 );
}
// Get the texture name and decide what ground type we have.
Wire wire;
sgdCopyVec3(wire.ends[0], ends[0]);
sgdCopyVec3(wire.ends[1], ends[1]);
- sgdSetVec3(wire.velocity, gp.vel);
+ sgdCopyVec3(wire.velocity, gp.vel);
+ sgdCopyVec3(wire.rotation, gp.rot);
+ sgdSubVec3(wire.rotation_pivot, gp.pivot, cache_center);
wire.wire_id = gp.wire_id;
wires.push_back(wire);
Catapult cat;
sgdCopyVec3(cat.start, ends[0]);
sgdCopyVec3(cat.end, ends[1]);
- sgdSetVec3(cat.velocity, gp.vel);
+ sgdCopyVec3(cat.velocity, gp.vel);
+ sgdCopyVec3(cat.rotation, gp.rot);
+ sgdSubVec3(cat.rotation_pivot, gp.pivot, cache_center);
catapults.push_back(cat);
}
// Check if the sphere around the vehicle intersects the sphere
// around that triangle. If so, put that triangle into the cache.
if (sphIsec && sp->intersects(&t.sphere)) {
- sgdSetVec3(t.velocity, gp.vel);
+ sgdCopyVec3(t.velocity, gp.vel);
+ sgdCopyVec3(t.rotation, gp.rot);
+ sgdSubVec3(t.rotation_pivot, gp.pivot, cache_center);
t.type = gp.type;
triangles.push_back(t);
}
dst.sphere.radius = src.sphere.radius;
sgdCopyVec3(dst.velocity, src.velocity);
+ sgdCopyVec3(dst.rotation, src.rotation);
+ sgdCopyVec3(dst.rotation_pivot, src.rotation_pivot);
dst.type = src.type;
if (dt*sgdLengthSquaredVec3(src.velocity) != 0) {
- sgdAddScaledVec3(dst.vertices[0], src.velocity, dt);
- sgdAddScaledVec3(dst.vertices[1], src.velocity, dt);
- sgdAddScaledVec3(dst.vertices[2], src.velocity, dt);
+ sgdVec3 pivotoff, vel;
+ for (int i = 0; i < 3; ++i) {
+ sgdSubVec3(pivotoff, src.vertices[i], src.rotation_pivot);
+ sgdVectorProductVec3(vel, src.rotation, pivotoff);
+ sgdAddVec3(vel, src.velocity);
+ sgdAddScaledVec3(dst.vertices[i], vel, dt);
+ }
- dst.plane[3] += dt*sgdScalarProductVec3(dst.plane, src.velocity);
+ // Transform the plane equation
+ sgdSubVec3(pivotoff, dst.plane, src.rotation_pivot);
+ sgdVectorProductVec3(vel, src.rotation, pivotoff);
+ sgdAddVec3(vel, src.velocity);
+ dst.plane[3] += dt*sgdScalarProductVec3(dst.plane, vel);
sgdAddScaledVec3(dst.sphere.center, src.velocity, dt);
}
size_t sz = catapults.size();
for (size_t i = 0; i < sz; ++i) {
+ sgdVec3 pivotoff, rvel[2];
sgdLineSegment3 ls;
sgdCopyVec3(ls.a, catapults[i].start);
sgdCopyVec3(ls.b, catapults[i].end);
+ sgdSubVec3(pivotoff, ls.a, catapults[i].rotation_pivot);
+ sgdVectorProductVec3(rvel[0], catapults[i].rotation, pivotoff);
+ sgdAddVec3(rvel[0], catapults[i].velocity);
+ sgdSubVec3(pivotoff, ls.b, catapults[i].rotation_pivot);
+ sgdVectorProductVec3(rvel[1], catapults[i].rotation, pivotoff);
+ sgdAddVec3(rvel[1], catapults[i].velocity);
+
sgdAddVec3(ls.a, cache_center);
sgdAddVec3(ls.b, cache_center);
- sgdAddScaledVec3(ls.a, catapults[i].velocity, t);
- sgdAddScaledVec3(ls.b, catapults[i].velocity, t);
+ sgdAddScaledVec3(ls.a, rvel[0], t);
+ sgdAddScaledVec3(ls.b, rvel[1], t);
double this_dist = sgdDistSquaredToLineSegmentVec3( ls, dpt );
if (this_dist < dist) {
// The carrier code takes care of that ordering.
sgdCopyVec3( end[0], ls.a );
sgdCopyVec3( end[1], ls.b );
- sgdCopyVec3( vel[0], catapults[i].velocity );
- sgdCopyVec3( vel[1], catapults[i].velocity );
+ sgdCopyVec3( vel[0], rvel[0] );
+ sgdCopyVec3( vel[1], rvel[1] );
}
}
// The first three values in the vector are the plane normal.
sgdCopyVec3( normal, triangle.plane );
// The velocity wrt earth.
- /// FIXME: only true for non rotating objects!!!!
- sgdCopyVec3( vel, triangle.velocity );
+ sgdVec3 pivotoff;
+ sgdSubVec3(pivotoff, pt, triangle.rotation_pivot);
+ sgdVectorProductVec3(vel, triangle.rotation, pivotoff);
+ sgdAddVec3(vel, triangle.velocity);
// Save the ground type.
*type = triangle.type;
// FIXME: figure out how to get that sign ...
// You have cautght a wire if they intersect.
for (size_t i = 0; i < sz; ++i) {
sgdVec3 le[2];
- sgdCopyVec3(le[0], wires[i].ends[0]);
- sgdCopyVec3(le[1], wires[i].ends[1]);
-
- sgdAddVec3(le[0], cache_center);
- sgdAddVec3(le[1], cache_center);
-
- sgdAddScaledVec3(le[0], wires[i].velocity, t);
- sgdAddScaledVec3(le[1], wires[i].velocity, t);
+ for (int k = 0; k < 2; ++k) {
+ sgdVec3 pivotoff, vel;
+ sgdCopyVec3(le[k], wires[i].ends[k]);
+ sgdSubVec3(pivotoff, le[k], wires[i].rotation_pivot);
+ sgdVectorProductVec3(vel, wires[i].rotation, pivotoff);
+ sgdAddVec3(vel, wires[i].velocity);
+ sgdAddScaledVec3(le[k], vel, t);
+ sgdAddVec3(le[k], cache_center);
+ }
for (int k=0; k<2; ++k) {
sgdVec3 isecpoint;
size_t sz = wires.size();
for (size_t i = 0; i < sz; ++i) {
if (wires[i].wire_id == wire_id) {
- sgdCopyVec3(end[0], wires[i].ends[0]);
- sgdCopyVec3(end[1], wires[i].ends[1]);
-
- sgdAddVec3(end[0], cache_center);
- sgdAddVec3(end[1], cache_center);
-
- sgdAddScaledVec3(end[0], wires[i].velocity, t);
- sgdAddScaledVec3(end[1], wires[i].velocity, t);
-
- sgdCopyVec3(vel[0], wires[i].velocity);
- sgdCopyVec3(vel[1], wires[i].velocity);
+ for (size_t k = 0; k < 2; ++k) {
+ sgdVec3 pivotoff;
+ sgdCopyVec3(end[k], wires[i].ends[k]);
+ sgdSubVec3(pivotoff, end[k], wires[i].rotation_pivot);
+ sgdVectorProductVec3(vel[k], wires[i].rotation, pivotoff);
+ sgdAddVec3(vel[k], wires[i].velocity);
+ sgdAddScaledVec3(end[k], vel[k], t);
+ sgdAddVec3(end[k], cache_center);
+ }
return true;
}
}
sgdVec4 plane;
// The bounding shpere.
sgdSphere sphere;
- // The linear velocity.
+ // The linear and angular velocity.
sgdVec3 velocity;
+ sgdVec3 rotation;
+ sgdVec3 rotation_pivot;
// Ground type
int type;
};
sgdVec3 start;
sgdVec3 end;
sgdVec3 velocity;
+ sgdVec3 rotation;
+ sgdVec3 rotation_pivot;
};
struct Wire {
sgdVec3 ends[2];
sgdVec3 velocity;
+ sgdVec3 rotation;
+ sgdVec3 rotation_pivot;
int wire_id;
};
GroundProperty() : type(0) {}
int type;
int wire_id;
- sgVec3 vel;
+ sgdVec3 vel;
+ sgdVec3 rot;
+ sgdVec3 pivot;
// not yet implemented ...
// double loadCapacity;
};