}
}
-/// The euclidean norm of the vector, that is what most people call length
+/// Construct a unit vector in the given direction.
+/// or the zero vector if the input vector is zero.
template<typename T>
inline
SGVec3<T>
normalize(const SGVec3<T>& v)
-{ return (1/norm(v))*v; }
+{ T normv = norm(v);
+ if (normv > 0.0) return (1/norm(v))*v;
+ else return v;
+}
/// Return true if exactly the same
template<typename T>
toVec3d(const SGVec3f& v)
{ return SGVec3d(v(0), v(1), v(2)); }
+// calculate the projection of u along the direction of d.
+template<typename T>
+inline SGVec3<T> SGProjection(const SGVec3<T>& u, const SGVec3<T>& d)
+{
+ T denom = dot(d, d);
+ if (denom == 0.) return u;
+ else return d * (dot(u,d) / denom);
+}
+
#ifndef NO_OPENSCENEGRAPH_INTERFACE
inline
SGVec3d
#include "vector.hxx"
+// calculate the projection, p, of u along the direction of d.
+void sgProjection(sgVec3 p, const sgVec3 u, const sgVec3 d){
+ double denom = sgScalarProductVec3(d,d);
+ if (denom == 0.) sgCopyVec3(p, u);
+ else sgScaleVec3(p, d, sgScalarProductVec3(u,d) / denom);
+}
+
+// Same thing, except using double precision
+void sgProjection(sgdVec3 p, const sgdVec3 u, const sgdVec3 d){
+ double denom = sgdScalarProductVec3(d,d);
+ if (denom == 0.) sgdCopyVec3(p, u);
+ else sgdScaleVec3(p, d, sgdScalarProductVec3(u,d) / denom);
+}
+
// Given a point p, and a line through p0 with direction vector d,
// find the closest point (p1) on the line
void sgClosestPointToLine( sgVec3 p1, const sgVec3 p, const sgVec3 p0,
sgSubVec3(u, p, p0);
// calculate the projection, u1, of u along d.
- // u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
- sgScaleVec3( u1, d, sgScalarProductVec3(u,d) / sgScalarProductVec3(d,d) );
+ sgProjection(u1, u, d);
// calculate the point p1 along the line that is closest to p
// p0 = p1 + u1
sgdSubVec3(u, p, p0);
// calculate the projection, u1, of u along d.
- // u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
- double ud = sgdScalarProductVec3(u, d);
- double dd = sgdScalarProductVec3(d, d);
- double tmp = ud / dd;
-
- sgdScaleVec3(u1, d, tmp);;
+ sgProjection(u1, u, d);
// calculate the point p1 along the line that is closest to p
// p0 = p1 + u1
sgSubVec3(u, p, p0);
// calculate the projection, u1, of u along d.
- // u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
- sgScaleVec3( u1, d, sgScalarProductVec3(u,d) / sgScalarProductVec3(d,d) );
+ sgProjection(u1, u, d);
// v = u - u1 = vector from closest point on line, p1, to the
// original point, p.
sgdSubVec3(u, p, p0);
// calculate the projection, u1, of u along d.
- // u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
- double ud = sgdScalarProductVec3(u, d);
- double dd = sgdScalarProductVec3(d, d);
- double tmp = ud / dd;
-
- sgdScaleVec3(u1, d, tmp);;
+ sgProjection(u1, u, d);
// v = u - u1 = vector from closest point on line, p1, to the
// original point, p.
/**
- * Map a vector onto a plane.
+ * calculate the projection, p, of u along the direction of d.
+ * @param p (out) the projection
+ * @param u (in) the vector to be projected
+ * @param d (in) the direction onto which we project
+ */
+void sgProjection(sgVec3 p, const sgVec3 u, const sgVec3 d);
+void sgProjection(sgdVec3 p, const sgdVec3 u, const sgdVec3 d);
+
+
+/**
+ * Map i.e. project a vector onto a plane.
* @param normal (in) normal vector for the plane
* @param v0 (in) a point on the plane
* @param vec (in) the vector to map onto the plane