point_to_point(itm_elev, receiver_height, transmitter_height,
eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
-
+ if( fgGetBool( "/sim/radio/use-clutter-attenuation", false ) )
+ clutterLoss(frq_mhz, distance_m, itm_elev, materials, receiver_height, transmitter_height, p_mode, horizons, clutter_loss);
}
else {
point_to_point(itm_elev, transmitter_height, receiver_height,
eps_dielect, sgm_conductivity, eno, frq_mhz, radio_climate,
pol, conf, rel, dbloss, strmode, p_mode, horizons, errnum);
+ if( fgGetBool( "/sim/radio/use-clutter-attenuation", false ) )
+ clutterLoss(frq_mhz, distance_m, itm_elev, materials, transmitter_height, receiver_height, p_mode, horizons, clutter_loss);
}
SG_LOG(SG_GENERAL, SG_BULK,
"ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum);
cerr << "ITM:: Link budget: " << link_budget << ", Attenuation: " << dbloss << " dBm, " << strmode << ", Error: " << errnum << endl;
- clutterLoss(frq_mhz, distance_m, itm_elev, materials, transmitter_height, receiver_height, p_mode, horizons, clutter_loss);
cerr << "Clutter loss: " << clutter_loss << endl;
//if (errnum == 4) // if parameters are outside sane values for lrprop, the alternative method is used
// return -1;