#ifdef SG_HAVE_STD_INCLUDES
# include <cmath>
-// # include <cstdio>
# include <ctime>
# ifdef macintosh
SG_USING_STD(time_t);
# endif
#else
# include <math.h>
-// # include <stdio.h>
# include <time.h>
#endif
-#include <simgear/math/point3d.hxx>
-#include <simgear/math/sg_geodesy.hxx>
+#include <simgear/math/SGMath.hxx>
#include <simgear/ephemeris/ephemeris.hxx>
#include <simgear/timing/sg_time.hxx>
/* double *lat; (return) latitude */
/* double *lon; (return) longitude */
- /* double lambda; */
double alpha, delta;
double tmp;
alpha = atan2(ys - tan(beta)*ze/ys, xs);
delta = asin(sin(beta)*ye/ys + cos(beta)*ze);
- // tmp = alpha - (SGD_2PI/24)*GST(ssue);
tmp = alpha - (SGD_2PI/24)*gst;
if (tmp < -SGD_PI) {
do tmp += SGD_2PI;
*lat = delta;
}
-static double sun_angle( const SGTime &t, sgVec3 world_up,
+static double sun_angle( const SGTime &t, const SGVec3d& world_up,
double lon_rad, double lat_rad ) {
- sgVec3 nup, nsun;
- Point3D p, rel_sunpos;
-
SG_LOG( SG_EVENT, SG_DEBUG, " Updating Sun position" );
SG_LOG( SG_EVENT, SG_DEBUG, " Gst = " << t.getGst() );
double sun_lon, sun_gd_lat;
fgSunPositionGST( t.getGst(), &sun_lon, &sun_gd_lat );
- Point3D sunpos = sgGeodToCart(Point3D(sun_lon, sun_gd_lat, 0));
+ SGVec3d sunpos = SGVec3d::fromGeod(SGGeod::fromRad(sun_lon, sun_gd_lat));
SG_LOG( SG_EVENT, SG_DEBUG, " t.cur_time = " << t.get_cur_time() );
SG_LOG( SG_EVENT, SG_DEBUG,
" Sun Geodetic lat = " << sun_gd_lat );
// calculate the sun's relative angle to local up
- sgCopyVec3( nup, world_up );
- sgSetVec3( nsun, sunpos.x(), sunpos.y(), sunpos.z() );
- sgNormalizeVec3(nup);
- sgNormalizeVec3(nsun);
+ SGVec3f nup = normalize(toVec3f(world_up));
+ SGVec3f nsun = normalize(toVec3f(sunpos));
// cout << "nup = " << nup[0] << "," << nup[1] << ","
// << nup[2] << endl;
// cout << "nsun = " << nsun[0] << "," << nsun[1] << ","
// << nsun[2] << endl;
- double sun_angle = acos( sgScalarProductVec3 ( nup, nsun ) );
+ double sun_angle = acos( dot( nup, nsun ) );
double sun_angle_deg = sun_angle * SG_RADIANS_TO_DEGREES;
while ( sun_angle_deg < -180 ) { sun_angle += 360; }
SG_LOG( SG_EVENT, SG_DEBUG, "sun angle relative to current location = "
{
// cout << "location = " << lon_rad * SG_RADIANS_TO_DEGREES << ", "
// << lat_rad * SG_RADIANS_TO_DEGREES << endl;
- Point3D geod( lon_rad, lat_rad, 0 );
- Point3D tmp = sgGeodToCart( geod );
- sgVec3 world_up;
- sgSetVec3( world_up, tmp.x(), tmp.y(), tmp.z() );
+ SGVec3d world_up = SGVec3d::fromGeod(SGGeod::fromRad(lon_rad, lat_rad));
SGTime t = SGTime( lon_rad, lat_rad, "", 0 );
double best_diff = 180.0;
# include <config.h>
#endif
+#include <simgear/math/SGMath.hxx>
#include <simgear/math/vector.hxx>
-#include <simgear/math/polar3d.hxx>
-#include <simgear/math/sg_geodesy.hxx>
#include <simgear/misc/sg_path.hxx>
-#include <simgear/magvar/magvar.hxx>
#include <simgear/timing/sg_time.hxx>
-#include <FDM/flight.hxx>
#include <Main/fg_props.hxx>
#include <Main/globals.hxx>
#include <Main/viewer.hxx>
// update the cur_time_params structure with the current sun position
void fgUpdateSunPos( void ) {
- sgVec3 nup, nsun;
- double dot, east_dot;
- double sun_gd_lat, sl_radius;
-
- // vector in cartesian coordinates from current position to the
- // postion on the earth's surface the sun is directly over
- sgVec3 to_sun;
-
- // surface direction to go to head towards sun
- sgVec3 surface_to_sun;
-
FGLight *l = (FGLight *)(globals->get_subsystem("lighting"));
SGTime *t = globals->get_time_params();
FGViewer *v = globals->get_current_view();
SG_LOG( SG_EVENT, SG_DEBUG, " Gst = " << t->getGst() );
double sun_l;
+ double sun_gd_lat;
fgSunPositionGST(t->getGst(), &sun_l, &sun_gd_lat);
l->set_sun_lon(sun_l);
-
- sgGeodToGeoc(sun_gd_lat, 0.0, &sl_radius, &sun_l);
- l->set_sun_gc_lat(sun_l);
-
- SGGeoc geocSun = SGGeoc::fromRadM( l->get_sun_lon(), l->get_sun_gc_lat(),
- sl_radius );
- l->set_sunpos( SGVec3d::fromGeoc(geocSun) );
+ l->set_sun_lat(sun_gd_lat);
+ l->set_sunpos(SGVec3d::fromGeod(SGGeod::fromRad(sun_l, sun_gd_lat)));
SG_LOG( SG_EVENT, SG_DEBUG, " t->cur_time = " << t->get_cur_time() );
SG_LOG( SG_EVENT, SG_DEBUG,
" Sun Geodetic lat = " << sun_gd_lat
- << " Geocentric lat = " << l->get_sun_gc_lat() );
+ << " Geodetic lat = " << sun_gd_lat );
// update the sun light vector
- sgSetVec4( l->sun_vec().data(), l->get_sunpos().x(),
- l->get_sunpos().y(), l->get_sunpos().z(), 0.0 );
- sgNormalizeVec4( l->sun_vec().data() );
- sgCopyVec4( l->sun_vec_inv().data(), l->sun_vec().data() );
- sgNegateVec4( l->sun_vec_inv().data() );
-
- // make sure these are directional light sources only
- l->sun_vec()[3] = l->sun_vec_inv()[3] = 0.0;
- // cout << " l->sun_vec = " << l->sun_vec[0] << "," << l->sun_vec[1]
- // << ","<< l->sun_vec[2] << endl;
+ l->sun_vec() = SGVec4f(toVec3f(normalize(l->get_sunpos())), 0);
+ l->sun_vec_inv() = - l->sun_vec();
// calculate the sun's relative angle to local up
- sgCopyVec3( nup, v->get_world_up().data() );
- sgSetVec3( nsun, l->get_sunpos().x(),
- l->get_sunpos().y(), l->get_sunpos().z() );
- sgNormalizeVec3(nup);
- sgNormalizeVec3(nsun);
+ SGVec3f nup(normalize(v->get_world_up()));
+ SGVec3f nsun(toVec3f(normalize(l->get_sunpos())));
// cout << "nup = " << nup[0] << "," << nup[1] << ","
// << nup[2] << endl;
// cout << "nsun = " << nsun[0] << "," << nsun[1] << ","
// << nsun[2] << endl;
- l->set_sun_angle( acos( sgScalarProductVec3 ( nup, nsun ) ) );
+ l->set_sun_angle( acos( dot ( nup, nsun ) ) );
SG_LOG( SG_EVENT, SG_DEBUG, "sun angle relative to current location = "
<< l->get_sun_angle() );
// calculate vector to sun's position on the earth's surface
SGVec3d rel_sunpos = globals->get_scenery()->get_center();
- SGVec3f vp( v->get_view_pos() );
- rel_sunpos += l->get_sunpos() - toVec3d(vp);
- sgSetVec3( to_sun, rel_sunpos.x(), rel_sunpos.y(), rel_sunpos.z() );
+ rel_sunpos += l->get_sunpos() - toVec3d(v->get_view_pos());
+ // vector in cartesian coordinates from current position to the
+ // postion on the earth's surface the sun is directly over
+ SGVec3f to_sun = toVec3f(rel_sunpos);
// printf( "Vector to sun = %.2f %.2f %.2f\n",
// v->to_sun[0], v->to_sun[1], v->to_sun[2]);
SGVec3f world_up = v->get_world_up();
SGVec3f view_pos = v->get_view_pos();
+ // surface direction to go to head towards sun
+ SGVec3f surface_to_sun;
sgmap_vec_onto_cur_surface_plane( world_up.data(), view_pos.data(),
- to_sun, surface_to_sun );
- sgNormalizeVec3(surface_to_sun);
+ to_sun.data(), surface_to_sun.data() );
+ surface_to_sun = normalize(surface_to_sun);
// cout << "(sg) Surface direction to sun is "
// << surface_to_sun[0] << ","
// << surface_to_sun[1] << ","
// v->get_surface_east(). We do this so we can sort out the
// acos() ambiguity. I wish I could think of a more efficient
// way. :-(
- east_dot = sgScalarProductVec3( surface_to_sun, v->get_surface_east().data() );
+ float east_dot = dot( surface_to_sun, v->get_surface_east() );
// cout << " East dot product = " << east_dot << endl;
// calculate the angle between v->surface_to_sun and
// v->surface_south. this is how much we have to rotate the sky
// for it to align with the sun
- dot = sgScalarProductVec3( surface_to_sun, v->get_surface_south().data() );
+ float dot_ = dot( surface_to_sun, v->get_surface_south() );
// cout << " Dot product = " << dot << endl;
- if (dot > 1.0) {
+ if (dot_ > 1.0) {
SG_LOG( SG_ASTRO, SG_INFO,
- "Dot product = " << dot << " is greater than 1.0" );
- dot = 1.0;
+ "Dot product = " << dot_ << " is greater than 1.0" );
+ dot_ = 1.0;
}
- else if (dot < -1.0) {
+ else if (dot_ < -1.0) {
SG_LOG( SG_ASTRO, SG_INFO,
- "Dot product = " << dot << " is less than -1.0" );
- dot = -1.0;
+ "Dot product = " << dot_ << " is less than -1.0" );
+ dot_ = -1.0;
}
if ( east_dot >= 0 ) {
- l->set_sun_rotation( acos(dot) );
+ l->set_sun_rotation( acos(dot_) );
} else {
- l->set_sun_rotation( -acos(dot) );
+ l->set_sun_rotation( -acos(dot_) );
}
// cout << " Sky needs to rotate = " << angle << " rads = "
// << angle * SGD_RADIANS_TO_DEGREES << " degrees." << endl;