{
FGNavRecord *nav = NULL;
Point3D station;
- double dist;
- double min_dist = FG_NAV_MAX_RANGE * SG_NM_TO_METER;
+ double d2; // in meters squared
+ double min_dist
+ = FG_NAV_MAX_RANGE*SG_NM_TO_METER*FG_NAV_MAX_RANGE*SG_NM_TO_METER;
// find the closest station within a sensible range (FG_NAV_MAX_RANGE)
for ( unsigned int i = 0; i < stations.size(); ++i ) {
stations[i]->get_y(),
stations[i]->get_z() );
- dist = aircraft.distance3D( station );
+ d2 = aircraft.distance3Dsquared( station );
// cout << " dist = " << sqrt(d)
// << " range = " << current->get_range() * SG_NM_TO_METER
// << endl;
- if ( dist < min_dist ) {
- min_dist = dist;
+ // LOC, ILS, GS, and DME antenna's could potentially be
+ // installed at the opposite end of the runway. So it's not
+ // enough to simply find the closest antenna with the right
+ // frequency. We need the closest antenna with the right
+ // frequency that is most oriented towards us. (We penalize
+ // stations that are facing away from us by adding 5000 meters
+ // which is further than matching stations would ever be
+ // placed from each other. (Do the expensive check only for
+ // directional atennas and only when there is a chance it is
+ // the closest station.)
+ if ( d2 < min_dist &&
+ (stations[i]->get_type() == 4 || stations[i]->get_type() == 5 ||
+ stations[i]->get_type() == 6 || stations[i]->get_type() == 12) )
+ {
+ double hdg_deg = 0.0;
+ if ( stations[i]->get_type() == 4 || stations[i]->get_type() == 5 ){
+ hdg_deg = stations[i]->get_multiuse();
+ } else if ( stations[i]->get_type() == 6 ) {
+ int tmp = (int)(stations[i]->get_multiuse() / 1000.0);
+ hdg_deg = stations[i]->get_multiuse() - (tmp * 1000);
+ } else if ( stations[i]->get_type() == 12 ) {
+ // oops, Robin's data format doesn't give us the
+ // needed information to compute a heading for a DME
+ // transmitter. FIXME Robin!
+ }
+
+ double az1 = 0.0, az2 = 0.0, s = 0.0;
+ double elev_m = 0.0, lat_rad = 0.0, lon_rad = 0.0;
+ double xyz[3] = { aircraft.x(), aircraft.y(), aircraft.z() };
+ sgCartToGeod( xyz, &lat_rad, &lon_rad, &elev_m );
+ geo_inverse_wgs_84( elev_m,
+ lat_rad * SG_RADIANS_TO_DEGREES,
+ lon_rad * SG_RADIANS_TO_DEGREES,
+ stations[i]->get_lat(), stations[i]->get_lon(),
+ &az1, &az2, &s);
+ az1 = az1 - stations[i]->get_multiuse();
+ if ( az1 > 180.0) az1 -= 360.0;
+ if ( az1 < -180.0) az1 += 360.0;
+ // penalize opposite facing stations by adding 5000 meters
+ // (squared) which is further than matching stations would
+ // ever be placed from each other.
+ if ( fabs(az1) > 90.0 ) {
+ d2 += 5000*5000;
+ }
+ }
+
+ if ( d2 < min_dist ) {
+ min_dist = d2;
nav = stations[i];
}
}