]> git.mxchange.org Git - flightgear.git/commitdiff
Add separate fields for receiver and transmitter:
authoradrian <adrian@localhost.com>
Tue, 29 Nov 2011 13:00:49 +0000 (15:00 +0200)
committeradrian <adrian@localhost.com>
Tue, 29 Nov 2011 13:00:49 +0000 (15:00 +0200)
- antenna gain and cable losses will be set individualy
- Fix the calculations of the number of elevation points
- Improve clutter loss calculations to yield sane results

src/Radio/radio.cxx
src/Radio/radio.hxx

index 62e023178ee1fa5d5d2f5ef85c1e81d13fa31748..3ea219ff77aadd377edff710bfb799c9a6798c46 100644 (file)
@@ -23,6 +23,7 @@
 #endif
 
 #include <math.h>
+#include <assert.h>
 #include <stdlib.h>
 #include <deque>
 #include "radio.hxx"
@@ -61,8 +62,15 @@ FGRadioTransmission::FGRadioTransmission() {
        *       real-life gain for conventional monopole/dipole antenna
        **/
        _antenna_gain = 2.0;
-       _propagation_model = 2; //  choose between models via option: realistic radio on/off
        
+       _rx_antenna_gain = 1.0;
+       _tx_antenna_gain = 1.0;
+       
+       _rx_line_losses = 2.0;  // to be configured for each station
+       _tx_line_losses = 2.0;
+       
+       _propagation_model = 2; //  choose between models via option: realistic radio on/off
+       _terrain_sampling_distance = 90.0; // regular SRTM is 90 meters
 }
 
 FGRadioTransmission::~FGRadioTransmission() 
@@ -266,7 +274,7 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        SGGeoc sender_pos_c = SGGeoc::fromGeod( sender_pos );
        //cerr << "ITM:: sender Lat: " << parent->getLatitude() << ", Lon: " << parent->getLongitude() << ", Alt: " << sender_alt << endl;
        
-       double point_distance= 90.0; // regular SRTM is 90 meters
+       double point_distance= _terrain_sampling_distance; 
        double course = SGGeodesy::courseRad(own_pos_c, sender_pos_c);
        double distance_m = SGGeodesy::distanceM(own_pos, sender_pos);
        double probe_distance = 0.0;
@@ -284,7 +292,9 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        }
        
                
-       double max_points = distance_m / point_distance;
+       int max_points = (int)floor(distance_m / point_distance);
+       double delta_last = fmod(distance_m, point_distance);
+       
        deque<double> _elevations;
        deque<string> materials;
        
@@ -354,11 +364,13 @@ double FGRadioTransmission::ITM_calculate_attenuation(SGGeod pos, double freq, i
        }
        if((transmission_type == 3) || (transmission_type == 4)) {
                _elevations.push_front(elevation_under_pilot);
-               _elevations.push_back(elevation_under_sender);
+               if (delta_last > (point_distance / 2) )                 // only add last point if it's farther than half point_distance
+                       _elevations.push_back(elevation_under_sender);
        }
        else {
                _elevations.push_back(elevation_under_pilot);
-               _elevations.push_front(elevation_under_sender);
+               if (delta_last > (point_distance / 2) )
+                       _elevations.push_front(elevation_under_sender);
        }
        
        
@@ -415,25 +427,26 @@ void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm
        double transmitter_height, double receiver_height, int p_mode,
        double horizons[], double &clutter_loss) {
        
+       distance_m = itm_elev[0] * itm_elev[1]; // only consider elevation points
        if (p_mode == 0) {      // LOS: take each point and see how clutter height affects first Fresnel zone
                int mat = 0;
                int j=1; // first point is TX elevation, last is RX elevation
-               for (int k=3;k < (int)itm_elev[0];k++) {
+               for (int k=3;k < (int)(itm_elev[0]) + 2;k++) {
                        
                        double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                        double clutter_density = 0.0;   // percent of reflected wave
                        get_material_properties(materials[mat], clutter_height, clutter_density);
                        //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                       double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 1] + receiver_height) / distance_m;
+                       double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
                        // First Fresnel radius
                        double frs_rad = 548 * sqrt( (j * itm_elev[1] * (itm_elev[0] - j) * itm_elev[1] / 1000000) / (  distance_m * freq / 1000) );
-                       
+                       assert(frs_rad > 0);
                        //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
                        //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                        
-                       double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 1] + receiver_height);
+                       double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
                        double d1 = j * itm_elev[1];
-                       if ((itm_elev[2] + transmitter_height) > ( itm_elev[(int)itm_elev[0] + 1] + receiver_height) ) {
+                       if ((itm_elev[2] + transmitter_height) > ( itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) {
                                d1 = (itm_elev[0] - j) * itm_elev[1];
                        }
                        double ray_height = (grad * d1) + min_elev;
@@ -462,28 +475,30 @@ void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm
        else if (p_mode == 1) {         // diffraction
                
                if (horizons[1] == 0.0) {       //      single horizon: same as above, except pass twice using the highest point
-                       int num_points_1st = (int)floor( horizons[0] * (double)itm_elev[0] / distance_m ); 
-                       int num_points_2nd = (int)floor( (distance_m - horizons[0]) * (double)itm_elev[0] / distance_m ); 
+                       int num_points_1st = (int)floor( horizons[0] * itm_elev[0]/ distance_m ); 
+                       int num_points_2nd = (int)ceil( (distance_m - horizons[0]) * itm_elev[0] / distance_m ); 
+                       cerr << "Diffraction 1 horizon:: points1: " << num_points_1st << " points2: " << num_points_2nd << endl;
                        int last = 1;
                        /** perform the first pass */
                        int mat = 0;
                        int j=1; // first point is TX elevation, 2nd is obstruction elevation
-                       for (int k=3;k < num_points_1st ;k++) {
-                               
+                       for (int k=3;k < num_points_1st + 2;k++) {
+                               if (num_points_1st < 1)
+                                       break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
                                get_material_properties(materials[mat], clutter_height, clutter_density);
                                //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                               double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 1] + clutter_height) / distance_m;
+                               double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
                                // First Fresnel radius
-                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / (  num_points_1st * itm_elev[1] * freq / 1000) );
-                               
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / ( num_points_1st * itm_elev[1] * freq / 1000) );
+                               assert(frs_rad > 0);
                                //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
-                               double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 1] + clutter_height);
+                               double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
                                double d1 = j * itm_elev[1];
-                               if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 1] + clutter_height) ) {
+                               if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
                                        d1 = (num_points_1st - j) * itm_elev[1];
                                }
                                double ray_height = (grad * d1) + min_elev;
@@ -510,25 +525,26 @@ void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm
                        }
                        
                        /** and the second pass */
-                       
-                       int l =1; // first point is diffraction edge, 2nd the RX elevation
-                       for (int k=last+1;k < num_points_2nd ;k++) {
-                               
+                       mat +=1;
+                       j =1; // first point is diffraction edge, 2nd the RX elevation
+                       for (int k=last+2;k < (int)(itm_elev[0]) + 2;k++) {
+                               if (num_points_2nd < 1)
+                                       break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
                                get_material_properties(materials[mat], clutter_height, clutter_density);
                                //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                               double grad = fabs(itm_elev[last] + clutter_height - itm_elev[(int)itm_elev[0] + 1] + receiver_height) / distance_m;
+                               double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
                                // First Fresnel radius
-                               double frs_rad = 548 * sqrt( (l * itm_elev[1] * (num_points_2nd - l) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
-                               
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
+                               assert(frs_rad > 0);
                                //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
-                               double min_elev = SGMiscd::min(itm_elev[last] + clutter_height, itm_elev[(int)itm_elev[0] + 1] + receiver_height);
-                               double d1 = l * itm_elev[1];
-                               if ( (itm_elev[last] + clutter_height) > (itm_elev[(int)itm_elev[0] + 1] + receiver_height) ) { 
-                                       d1 = (num_points_2nd - l) * itm_elev[1];
+                               double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
+                               double d1 = j * itm_elev[1];
+                               if ( (itm_elev[last+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { 
+                                       d1 = (num_points_2nd - j) * itm_elev[1];
                                }
                                double ray_height = (grad * d1) + min_elev;
                                //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
@@ -549,36 +565,38 @@ void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm
                                        // no losses
                                }
                                j++;
-                               l++;
                                mat++;
                        }
                        
                }
                else {  // double horizon: same as single horizon, except there are 3 segments
                        
-                       int num_points_1st = (int)floor( horizons[0] * (double)itm_elev[0] / distance_m ); 
-                       int num_points_2nd = (int)floor( (horizons[1] - horizons[0]) * (double)itm_elev[0] / distance_m ); 
-                       int num_points_3rd = (int)floor( (distance_m - horizons[1]) * (double)itm_elev[0] / distance_m ); 
+                       int num_points_1st = (int)floor( horizons[0] * itm_elev[0] / distance_m ); 
+                       int num_points_2nd = (int)ceil( (horizons[1] - horizons[0]) * itm_elev[0] / distance_m ); 
+                       int num_points_3rd = (int)itm_elev[0] - num_points_1st - num_points_2nd; 
+                       
+                       cerr << "Clutter:: points1: " << num_points_1st << " points2: " << num_points_2nd << " points3: " << num_points_3rd << endl;
                        int last = 1;
                        /** perform the first pass */
                        int mat = 0;
                        int j=1; // first point is TX elevation, 2nd is obstruction elevation
-                       for (int k=3;k < num_points_1st ;k++) {
-                               
+                       for (int k=3;k < num_points_1st +2;k++) {
+                               if (num_points_1st < 1)
+                                       break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
                                get_material_properties(materials[mat], clutter_height, clutter_density);
                                //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                               double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 1] + clutter_height) / distance_m;
+                               double grad = fabs(itm_elev[2] + transmitter_height - itm_elev[num_points_1st + 2] + clutter_height) / distance_m;
                                // First Fresnel radius
                                double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_1st - j) * itm_elev[1] / 1000000) / (  num_points_1st * itm_elev[1] * freq / 1000) );
-                               
+                               assert(frs_rad > 0);
                                //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
-                               double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 1] + clutter_height);
+                               double min_elev = SGMiscd::min(itm_elev[2] + transmitter_height, itm_elev[num_points_1st + 2] + clutter_height);
                                double d1 = j * itm_elev[1];
-                               if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 1] + clutter_height) ) {
+                               if ( (itm_elev[2] + transmitter_height) > (itm_elev[num_points_1st + 2] + clutter_height) ) {
                                        d1 = (num_points_1st - j) * itm_elev[1];
                                }
                                double ray_height = (grad * d1) + min_elev;
@@ -602,27 +620,28 @@ void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm
                                j++;
                                last = k;
                        }
-                       
+                       mat +=1;
                        /** and the second pass */
-                       
-                       int l =1; // first point is 1st obstruction elevation, 2nd is 2nd obstruction elevation
-                       for (int k=last;k < num_points_2nd ;k++) {
-                               
+                       int last2=1;
+                       j =1; // first point is 1st obstruction elevation, 2nd is 2nd obstruction elevation
+                       for (int k=last+2;k < num_points_1st + num_points_2nd +2;k++) {
+                               if (num_points_2nd < 1)
+                                       break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
                                get_material_properties(materials[mat], clutter_height, clutter_density);
                                //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                               double grad = fabs(itm_elev[last] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 1] + clutter_height) / distance_m;
+                               double grad = fabs(itm_elev[last+1] + clutter_height - itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) / distance_m;
                                // First Fresnel radius
-                               double frs_rad = 548 * sqrt( (l * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
-                               
-                               //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_2nd - j) * itm_elev[1] / 1000000) / (  num_points_2nd * itm_elev[1] * freq / 1000) );
+                               //cerr << "Clutter:: fresnel radius: " << frs_rad << " points2: " << num_points_2nd << " j: " << j << endl;
+                               assert(frs_rad > 0);
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
-                               double min_elev = SGMiscd::min(itm_elev[last] + clutter_height, itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height);
-                               double d1 = l * itm_elev[1];
-                               if ( (itm_elev[last] + clutter_height) > (itm_elev[num_points_1st + num_points_2nd + 1] + clutter_height) ) { 
-                                       d1 = (num_points_2nd - l) * itm_elev[1];
+                               double min_elev = SGMiscd::min(itm_elev[last+1] + clutter_height, itm_elev[num_points_1st + num_points_2nd +2] + clutter_height);
+                               double d1 = j * itm_elev[1];
+                               if ( (itm_elev[last+1] + clutter_height) > (itm_elev[num_points_1st + num_points_2nd + 2] + clutter_height) ) { 
+                                       d1 = (num_points_2nd - j) * itm_elev[1];
                                }
                                double ray_height = (grad * d1) + min_elev;
                                //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
@@ -643,31 +662,32 @@ void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm
                                        // no losses
                                }
                                j++;
-                               l++;
                                mat++;
-                               last = k;
+                               last2 = k;
                        }
                        
                        /** third and final pass */
-                       
-                       int m =1; // first point is 2nd obstruction elevation, 3rd is RX elevation
-                       for (int k=last;k < num_points_3rd ;k++) {
-                               
+                       mat +=1;
+                       j =1; // first point is 2nd obstruction elevation, 3rd is RX elevation
+                       for (int k=last2+2;k < (int)itm_elev[0] + 2;k++) {
+                               if (num_points_3rd < 1)
+                                       break;
                                double clutter_height = 0.0;    // mean clutter height for a certain terrain type
                                double clutter_density = 0.0;   // percent of reflected wave
                                get_material_properties(materials[mat], clutter_height, clutter_density);
                                //cerr << "Clutter:: material: " << materials[mat] << " height: " << clutter_height << ", density: " << clutter_density << endl;
-                               double grad = fabs(itm_elev[last] + clutter_height - itm_elev[(int)itm_elev[0] + 1] + receiver_height) / distance_m;
+                               double grad = fabs(itm_elev[last2+1] + clutter_height - itm_elev[(int)itm_elev[0] + 2] + receiver_height) / distance_m;
                                // First Fresnel radius
-                               double frs_rad = 548 * sqrt( (m * itm_elev[1] * (num_points_3rd - m) * itm_elev[1] / 1000000) / (  num_points_3rd * itm_elev[1] * freq / 1000) );
-                               
+                               double frs_rad = 548 * sqrt( (j * itm_elev[1] * (num_points_3rd - j) * itm_elev[1] / 1000000) / (  num_points_3rd * itm_elev[1] * freq / 1000) );
+                               cerr << "Clutter:: fresnel radius: " << frs_rad << " points2: " << num_points_3rd << " j: " << j << endl;
+                               assert(frs_rad > 0);
                                //cerr << "Clutter:: fresnel radius: " << frs_rad << endl;
                                //double earth_h = distance_m * (distance_m - j * itm_elev[1]) / ( 1000000 * 12.75 * 1.33 );    // K=4/3
                                
-                               double min_elev = SGMiscd::min(itm_elev[last] + clutter_height, itm_elev[(int)itm_elev[0] + 1] + receiver_height);
-                               double d1 = m * itm_elev[1];
-                               if ( (itm_elev[last] + clutter_height) > (itm_elev[(int)itm_elev[0] + 1] + receiver_height) ) { 
-                                       d1 = (num_points_3rd - m) * itm_elev[1];
+                               double min_elev = SGMiscd::min(itm_elev[last2+1] + clutter_height, itm_elev[(int)itm_elev[0] + 2] + receiver_height);
+                               double d1 = j * itm_elev[1];
+                               if ( (itm_elev[last2+1] + clutter_height) > (itm_elev[(int)itm_elev[0] + 2] + receiver_height) ) { 
+                                       d1 = (num_points_3rd - j) * itm_elev[1];
                                }
                                double ray_height = (grad * d1) + min_elev;
                                //cerr << "Clutter:: ray height: " << ray_height << " ground height:" << itm_elev[k] << endl;
@@ -688,9 +708,8 @@ void FGRadioTransmission::clutterLoss(double freq, double distance_m, double itm
                                        // no losses
                                }
                                j++;
-                               m++;
                                mat++;
-                               last = k+1;
+                               
                        }
                        
                }
index da84313fc7b804941cf904d2e5af2d6cae37bb12..4c2bb7f64c7e0707986824b142a5ff0d443738c1 100644 (file)
@@ -45,6 +45,11 @@ private:
        double _tx_antenna_height;
        double _rx_antenna_height;
        double _antenna_gain;
+       double _rx_antenna_gain;
+       double _tx_antenna_gain;
+       double _rx_line_losses;
+       double _tx_line_losses;
+       double _terrain_sampling_distance;
        std::map<string, double[2]> _mat_database;
        
        int _propagation_model; /// 0 none, 1 round Earth, 2 ITM