glLoadIdentity();
/* calculate view position in current FG view coordinate system */
- view_pos = fgPolarToCart(FG_Lon_geocentric, FG_Lat_geocentric,
+ view_pos = fgPolarToCart(FG_Longitude, FG_Lat_geocentric,
FG_Radius_to_vehicle * FEET_TO_METER + 1.0);
printf("View pos = %.4f, %.4f, %.4f\n", view_pos.x, view_pos.y, view_pos.z);
+ /* Derive the LOCAL aircraft rotation matrix (roll, pitch, yaw) */
+ MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
+ MAT3rotate(R, vec, FG_Phi);
+ /* printf("Roll matrix\n"); */
+ /* MAT3print(R, stdout); */
+
+ MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
+ /* MAT3mult_vec(vec, vec, R); */
+ MAT3rotate(TMP, vec, FG_Theta);
+ /* printf("Pitch matrix\n"); */
+ /* MAT3print(TMP, stdout); */
+ MAT3mult(R, R, TMP);
+
+ MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
+ /* MAT3mult_vec(vec, vec, R); */
+ /* MAT3rotate(TMP, vec, FG_Psi - FG_PI_2); */
+ MAT3rotate(TMP, vec, -FG_Psi);
+ /* printf("Yaw matrix\n");
+ MAT3print(TMP, stdout); */
+ MAT3mult(LOCAL, R, TMP);
+ /* printf("LOCAL matrix\n"); */
+ /* MAT3print(LOCAL, stdout); */
+
/* Derive the local UP transformation matrix based on *geodetic*
* coordinates */
MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
/* MAT3print(TMP, stdout); */
MAT3mult(UP, R, TMP);
- printf("Local up matrix\n");
- MAT3print(UP, stdout);
+ /* printf("Local up matrix\n"); */
+ /* MAT3print(UP, stdout); */
MAT3_SET_VEC(local_up, 1.0, 0.0, 0.0);
MAT3mult_vec(local_up, local_up, UP);
/* printf(" Alt Up = (%.4f, %.4f, %.4f)\n",
alt_up.x, alt_up.y, alt_up.z); */
- /* Derive the LOCAL aircraft rotation matrix (roll, pitch, yaw) */
- MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
- MAT3rotate(R, vec, FG_Phi);
- /* printf("Roll matrix\n"); */
- /* MAT3print(R, stdout); */
-
- MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
- /* MAT3mult_vec(vec, vec, R); */
- MAT3rotate(TMP, vec, -FG_Theta);
- /* printf("Pitch matrix\n"); */
- /* MAT3print(TMP, stdout); */
- MAT3mult(R, R, TMP);
-
- MAT3_SET_VEC(vec, 0.0, 0.0, -1.0);
- /* MAT3mult_vec(vec, vec, R); */
- /* MAT3rotate(TMP, vec, FG_PI + FG_PI_2 + FG_Psi + view_offset); */
- MAT3rotate(TMP, vec, FG_Psi - FG_PI_2);
- /* printf("Yaw matrix\n");
- MAT3print(TMP, stdout); */
- MAT3mult(LOCAL, R, TMP);
- printf("LOCAL matrix\n");
- MAT3print(LOCAL, stdout);
-
/* Derive the VIEW matrix */
- MAT3mult(VIEW, UP, LOCAL);
- printf("VIEW matrix\n");
- MAT3print(VIEW, stdout);
+ MAT3mult(VIEW, LOCAL, UP);
+ /* printf("VIEW matrix\n"); */
+ /* MAT3print(VIEW, stdout); */
/* generate the current up, forward, and fwrd-view vectors */
MAT3_SET_VEC(vec, 1.0, 0.0, 0.0);
MAT3mult_vec(view_up, vec, VIEW);
- MAT3_SET_VEC(vec, 0.0, 1.0, 0.0);
+ MAT3_SET_VEC(vec, 0.0, 0.0, 1.0);
MAT3mult_vec(forward, vec, VIEW);
printf("Forward vector is (%.2f,%.2f,%.2f)\n", forward[0], forward[1],
forward[2]);
gluLookAt(view_pos.x, view_pos.y, view_pos.z,
view_pos.x + view_forward[0], view_pos.y + view_forward[1],
view_pos.z + view_forward[2],
- local_up[0], local_up[1], local_up[2]);
+ view_up[0], view_up[1], view_up[2]);
glLightfv( GL_LIGHT0, GL_POSITION, sun_vec );
}
/* Initial Orientation */
FG_Phi = -2.658474E-06;
FG_Theta = 7.401790E-03;
- FG_Psi = 270.0 * DEG_TO_RAD;
+ /* FG_Psi = 270.0 * DEG_TO_RAD; */
+ FG_Psi = 0.0 * DEG_TO_RAD;
/* Initial Angular B rates */
FG_P_body = 7.206685E-05;
rough_elev = mesh_altitude(FG_Longitude * RAD_TO_DEG * 3600.0,
FG_Latitude * RAD_TO_DEG * 3600.0);
printf("Ground elevation is %.2f meters here.\n", rough_elev);
- FG_Runway_altitude = rough_elev * METER_TO_FEET;
+ if ( rough_elev > -9990.0 ) {
+ FG_Runway_altitude = rough_elev * METER_TO_FEET;
+ }
if ( FG_Altitude < FG_Runway_altitude ) {
FG_Altitude = FG_Runway_altitude + 3.758099;
/* $Log$
-/* Revision 1.41 1997/07/31 22:52:37 curt
-/* Working on redoing internal coordinate systems & scenery transformations.
+/* Revision 1.42 1997/08/01 19:43:33 curt
+/* Making progress with coordinate system overhaul.
/*
+ * Revision 1.41 1997/07/31 22:52:37 curt
+ * Working on redoing internal coordinate systems & scenery transformations.
+ *
* Revision 1.40 1997/07/30 16:12:42 curt
* Moved fg_random routines from Util/ to Math/
*