#include <simgear/debug/logstream.hxx>
#include <simgear/constants.h>
+#include <simgear/math/point3d.hxx>
+#include <simgear/math/polar3d.hxx>
+#include <simgear/math/sg_geodesy.hxx>
+
+#include <Scenery/scenery.hxx>
#include "viewer.hxx"
+\f
+////////////////////////////////////////////////////////////////////////
+// Implementation of FGViewPoint.
+////////////////////////////////////////////////////////////////////////
+
+FGViewPoint::FGViewPoint ()
+ : _dirty(true),
+ _lon_deg(0),
+ _lat_deg(0),
+ _alt_ft(0)
+{
+}
+
+FGViewPoint::~FGViewPoint ()
+{
+}
+
+void
+FGViewPoint::setPosition (double lon_deg, double lat_deg, double alt_ft)
+{
+ _dirty = true;
+ _lon_deg = lon_deg;
+ _lat_deg = lat_deg;
+ _alt_ft = alt_ft;
+}
+
+const double *
+FGViewPoint::getAbsoluteViewPos () const
+{
+ if (_dirty)
+ recalc();
+ return _absolute_view_pos;
+}
+
+const float *
+FGViewPoint::getRelativeViewPos () const
+{
+ if (_dirty)
+ recalc();
+ return _relative_view_pos;
+}
+
+const float *
+FGViewPoint::getZeroElevViewPos () const
+{
+ if (_dirty)
+ recalc();
+ return _zero_elev_view_pos;
+}
+
+void
+FGViewPoint::recalc () const
+{
+ double sea_level_radius_m;
+ double lat_geoc_rad;
+
+ // Convert from geodetic to geocentric
+ // coordinates.
+ sgGeodToGeoc(_lat_deg * SGD_DEGREES_TO_RADIANS,
+ _alt_ft * SG_FEET_TO_METER,
+ &sea_level_radius_m,
+ &lat_geoc_rad);
+
+ // Calculate the cartesian coordinates
+ // of point directly below at sea level.
+ Point3D p = Point3D(_lon_deg * SG_DEGREES_TO_RADIANS,
+ lat_geoc_rad,
+ sea_level_radius_m);
+ Point3D tmp = sgPolarToCart3d(p) - scenery.get_center();
+ sgSetVec3(_zero_elev_view_pos, tmp[0], tmp[1], tmp[2]);
+
+ // Calculate the absolute view position
+ // in fgfs coordinates.
+ p.setz(p.radius() + _alt_ft * SG_FEET_TO_METER);
+ tmp = sgPolarToCart3d(p);
+ sgdSetVec3(_absolute_view_pos, tmp[0], tmp[1], tmp[2]);
+
+ // Calculate the relative view position
+ // from the scenery center.
+ sgdVec3 scenery_center;
+ sgdSetVec3(scenery_center,
+ scenery.get_center().x(),
+ scenery.get_center().y(),
+ scenery.get_center().z());
+ sgdVec3 view_pos;
+ sgdSubVec3(view_pos, _absolute_view_pos, scenery_center);
+ sgSetVec3(_relative_view_pos, view_pos);
+}
+
+
+\f
+////////////////////////////////////////////////////////////////////////
+// Implementation of FGViewer.
+////////////////////////////////////////////////////////////////////////
+
// Constructor
FGViewer::FGViewer( void ):
scalingType(FG_SCALING_MAX),
}
-#if 0
-// convert sgMat4 to MAT3 and print
-static void print_sgMat4( sgMat4 &in) {
- int i, j;
- for ( i = 0; i < 4; i++ ) {
- for ( j = 0; j < 4; j++ ) {
- printf("%10.4f ", in[i][j]);
- }
- cout << endl;
- }
-}
-#endif
-
-
// Update the view parameters
void FGViewerLookAt::update() {
- Point3D tmp;
sgVec3 minus_z;
- // convert to geocentric coordinates
- double geoc_lat;
- sgGeodToGeoc( geod_view_pos[1], geod_view_pos[2],
- &sea_level_radius, &geoc_lat );
-
- // calculate the cartesion coords of the current lat/lon/0 elev
- Point3D p = Point3D( geod_view_pos[0], geoc_lat, sea_level_radius );
-
- tmp = sgPolarToCart3d(p) - scenery.get_center();
- sgSetVec3( zero_elev, tmp[0], tmp[1], tmp[2] );
-
- // calculate view position in current FG view coordinate system
- // p.lon & p.lat are already defined earlier, p.radius was set to
- // the sea level radius, so now we add in our altitude.
- if ( geod_view_pos[2] > (scenery.get_cur_elev() + 0.5 * SG_METER_TO_FEET) ) {
- p.setz( p.radius() + geod_view_pos[2] );
- } else {
- p.setz( p.radius() + scenery.get_cur_elev() + 0.5 * SG_METER_TO_FEET );
- }
-
- tmp = sgPolarToCart3d(p);
- sgdSetVec3( abs_view_pos, tmp[0], tmp[1], tmp[2] );
-
- // view_pos = abs_view_pos - scenery.center;
- sgdVec3 sc;
- sgdSetVec3( sc,
- scenery.get_center().x(),
- scenery.get_center().y(),
- scenery.get_center().z() );
- sgdVec3 vp;
- sgdSubVec3( vp, abs_view_pos, sc );
- sgSetVec3( view_pos, vp );
+ view_point.setPosition(geod_view_pos[0] * SGD_RADIANS_TO_DEGREES,
+ geod_view_pos[1] * SGD_RADIANS_TO_DEGREES,
+ geod_view_pos[2] * SG_METER_TO_FEET);
+ sgCopyVec3(zero_elev, view_point.getZeroElevViewPos());
+ sgdCopyVec3(abs_view_pos, view_point.getAbsoluteViewPos());
+ sgCopyVec3(view_pos, view_point.getRelativeViewPos());
sgVec3 tmp_offset;
sgCopyVec3( tmp_offset, pilot_offset );
sgAddVec3( view_pos, tmp_offset );
// !!!!!!!!!! testing
- // sgAddVec3( view_pos, pilot_offset );
-
- SG_LOG( SG_VIEW, SG_DEBUG, "sea level radius = " << sea_level_radius );
- SG_LOG( SG_VIEW, SG_DEBUG, "Polar view pos = " << p );
- SG_LOG( SG_VIEW, SG_DEBUG, "Absolute view pos = "
- << abs_view_pos[0] << ","
- << abs_view_pos[1] << ","
- << abs_view_pos[2] );
- SG_LOG( SG_VIEW, SG_DEBUG, "Relative view pos = "
- << view_pos[0] << "," << view_pos[1] << "," << view_pos[2] );
- SG_LOG( SG_VIEW, SG_DEBUG, "pilot offset = "
- << pilot_offset[0] << "," << pilot_offset[1] << ","
- << pilot_offset[2] );
- SG_LOG( SG_VIEW, SG_DEBUG, "view forward = "
- << view_forward[0] << "," << view_forward[1] << ","
- << view_forward[2] );
- SG_LOG( SG_VIEW, SG_DEBUG, "view up = "
- << view_up[0] << "," << view_up[1] << ","
- << view_up[2] );
-
// Make the VIEW matrix.
fgMakeLookAtMat4( VIEW, view_pos, view_forward, view_up );
- // cout << "VIEW matrix" << endl;
- // print_sgMat4( VIEW );
// the VIEW matrix includes both rotation and translation. Let's
// knock out the translation part to make the VIEW_ROT matrix
// use a clever observation into the nature of our tranformation
// matrix to grab the world_up vector
sgSetVec3( world_up, UP[0][0], UP[0][1], UP[0][2] );
- // cout << "World Up = " << world_up[0] << "," << world_up[1] << ","
- // << world_up[2] << endl;
-
// Given a vector pointing straight down (-Z), map into onto the
// local plane representing "horizontal". This should give us the
sgmap_vec_onto_cur_surface_plane(world_up, view_pos, minus_z,
surface_south);
sgNormalizeVec3(surface_south);
- // cout << "Surface direction directly south " << surface_south[0] << ","
- // << surface_south[1] << "," << surface_south[2] << endl;
// now calculate the surface east vector
-#define USE_FAST_SURFACE_EAST
-#ifdef USE_FAST_SURFACE_EAST
sgVec3 world_down;
sgNegateVec3(world_down, world_up);
sgVectorProductVec3(surface_east, surface_south, world_down);
-#else
- sgMakeRotMat4( TMP, SGD_PI_2 * SGD_RADIANS_TO_DEGREES, world_up );
- // cout << "sgMat4 TMP" << endl;
- // print_sgMat4( TMP );
- sgXformVec3(surface_east, surface_south, TMP);
-#endif // USE_FAST_SURFACE_EAST
- // cout << "Surface direction directly east " << surface_east[0] << ","
- // << surface_east[1] << "," << surface_east[2] << endl;
- // cout << "Should be close to zero = "
- // << sgScalarProductVec3(surface_south, surface_east) << endl;
set_clean();
}
FGViewerRPH::FGViewerRPH( void )
{
set_reverse_view_offset(false);
-#ifndef USE_FAST_VIEWROT
- // This never changes -- NHV
- LARC_TO_SSG[0][0] = 0.0;
- LARC_TO_SSG[0][1] = 1.0;
- LARC_TO_SSG[0][2] = -0.0;
- LARC_TO_SSG[0][3] = 0.0;
-
- LARC_TO_SSG[1][0] = 0.0;
- LARC_TO_SSG[1][1] = 0.0;
- LARC_TO_SSG[1][2] = 1.0;
- LARC_TO_SSG[1][3] = 0.0;
-
- LARC_TO_SSG[2][0] = 1.0;
- LARC_TO_SSG[2][1] = -0.0;
- LARC_TO_SSG[2][2] = 0.0;
- LARC_TO_SSG[2][3] = 0.0;
-
- LARC_TO_SSG[3][0] = 0.0;
- LARC_TO_SSG[3][1] = 0.0;
- LARC_TO_SSG[3][2] = 0.0;
- LARC_TO_SSG[3][3] = 1.0;
-#endif // USE_FAST_VIEWROT
}
-#define USE_FAST_VIEWROT
-#ifdef USE_FAST_VIEWROT
// VIEW_ROT = LARC_TO_SSG * ( VIEWo * VIEW_OFFSET )
// This takes advantage of the fact that VIEWo and VIEW_OFFSET
// only have entries in the upper 3x3 block
dst[3][2] = SG_ZERO;
dst[3][3] = SG_ONE;
}
-#endif
-#define USE_FAST_LOCAL
-#ifdef USE_FAST_LOCAL
inline static void fgMakeLOCAL( sgMat4 dst, const double Theta,
const double Phi, const double Psi)
{
dst[3][2] = SG_ZERO;
dst[3][3] = SG_ONE ;
}
-#endif
-
-
-#if 0
-// convert sgMat4 to MAT3 and print
-static void print_sgMat4( sgMat4 &in) {
- int i, j;
- for ( i = 0; i < 4; i++ ) {
- for ( j = 0; j < 4; j++ ) {
- printf("%10.4f ", in[i][j]);
- }
- cout << endl;
- }
-}
-#endif
// Update the view parameters
void FGViewerRPH::update() {
- Point3D tmp;
sgVec3 minus_z, right, forward, tilt;
sgMat4 VIEWo;
- // convert to geocentric coordinates
- double geoc_lat;
- sgGeodToGeoc( geod_view_pos[1], geod_view_pos[2],
- &sea_level_radius, &geoc_lat );
-
- // calculate the cartesion coords of the current lat/lon/0 elev
- Point3D p = Point3D( geod_view_pos[0], geoc_lat, sea_level_radius );
-
- tmp = sgPolarToCart3d(p) - scenery.get_center();
- sgSetVec3( zero_elev, tmp[0], tmp[1], tmp[2] );
-
- // calculate view position in current FG view coordinate system
- // p.lon & p.lat are already defined earlier, p.radius was set to
- // the sea level radius, so now we add in our altitude.
- if ( geod_view_pos[2] > (scenery.get_cur_elev() + 0.5 * SG_METER_TO_FEET) ) {
- p.setz( p.radius() + geod_view_pos[2] );
- } else {
- p.setz( p.radius() + scenery.get_cur_elev() + 0.5 * SG_METER_TO_FEET );
- }
-
- tmp = sgPolarToCart3d(p);
- sgdSetVec3( abs_view_pos, tmp[0], tmp[1], tmp[2] );
-
- // view_pos = abs_view_pos - scenery.center;
- sgdVec3 sc;
- sgdSetVec3( sc,
- scenery.get_center().x(),
- scenery.get_center().y(),
- scenery.get_center().z() );
- sgdVec3 vp;
- sgdSubVec3( vp, abs_view_pos, sc );
- sgSetVec3( view_pos, vp );
-
- SG_LOG( SG_VIEW, SG_DEBUG, "sea level radius = " << sea_level_radius );
- SG_LOG( SG_VIEW, SG_DEBUG, "Polar view pos = " << p );
- SG_LOG( SG_VIEW, SG_DEBUG, "Absolute view pos = "
- << abs_view_pos[0] << ","
- << abs_view_pos[1] << ","
- << abs_view_pos[2] );
- SG_LOG( SG_VIEW, SG_DEBUG, "Scenery center = "
- << sc[0] << "," << sc[1] << "," << sc[2] );
- SG_LOG( SG_VIEW, SG_DEBUG, "(RPH) Relative view pos = "
- << view_pos[0] << "," << view_pos[1] << "," << view_pos[2] );
+ view_point.setPosition(geod_view_pos[0] * SGD_RADIANS_TO_DEGREES,
+ geod_view_pos[1] * SGD_RADIANS_TO_DEGREES,
+ geod_view_pos[2] * SG_METER_TO_FEET);
+ sgCopyVec3(zero_elev, view_point.getZeroElevViewPos());
+ sgdCopyVec3(abs_view_pos, view_point.getAbsoluteViewPos());
+ sgCopyVec3(view_pos, view_point.getRelativeViewPos());
// code to calculate LOCAL matrix calculated from Phi, Theta, and
// Psi (roll, pitch, yaw) in case we aren't running LaRCsim as our
// flight model
-#ifdef USE_FAST_LOCAL
-
fgMakeLOCAL( LOCAL, rph[1], rph[0], -rph[2] );
-#else // USE_TEXT_BOOK_METHOD
-
- sgVec3 rollvec;
- sgSetVec3( rollvec, 0.0, 0.0, 1.0 );
- sgMat4 PHI; // roll
- sgMakeRotMat4( PHI, rph[0] * SGD_RADIANS_TO_DEGREES, rollvec );
-
- sgVec3 pitchvec;
- sgSetVec3( pitchvec, 0.0, 1.0, 0.0 );
- sgMat4 THETA; // pitch
- sgMakeRotMat4( THETA, rph[1] * SGD_RADIANS_TO_DEGREES, pitchvec );
-
- // ROT = PHI * THETA
- sgMat4 ROT;
- // sgMultMat4( ROT, PHI, THETA );
- sgCopyMat4( ROT, PHI );
- sgPostMultMat4( ROT, THETA );
-
- sgVec3 yawvec;
- sgSetVec3( yawvec, 1.0, 0.0, 0.0 );
- sgMat4 PSI; // heading
- sgMakeRotMat4( PSI, -rph[2] * SGD_RADIANS_TO_DEGREES, yawvec );
-
- // LOCAL = ROT * PSI
- // sgMultMat4( LOCAL, ROT, PSI );
- sgCopyMat4( LOCAL, ROT );
- sgPostMultMat4( LOCAL, PSI );
-
-#endif // USE_FAST_LOCAL
-
- // cout << "LOCAL matrix" << endl;
- // print_sgMat4( LOCAL );
-
sgMakeRotMat4( UP,
geod_view_pos[0] * SGD_RADIANS_TO_DEGREES,
0.0,
-geod_view_pos[1] * SGD_RADIANS_TO_DEGREES );
sgSetVec3( world_up, UP[0][0], UP[0][1], UP[0][2] );
- // sgXformVec3( world_up, UP );
- // cout << "World Up = " << world_up[0] << "," << world_up[1] << ","
- // << world_up[2] << endl;
-
- // Alternative method to Derive world up vector based on
- // *geodetic* coordinates
- // alt_up = sgPolarToCart(FG_Longitude, FG_Latitude, 1.0);
- // printf( " Alt Up = (%.4f, %.4f, %.4f)\n",
- // alt_up.x, alt_up.y, alt_up.z);
-
- // VIEWo = LOCAL * UP
- // sgMultMat4( VIEWo, LOCAL, UP );
sgCopyMat4( VIEWo, LOCAL );
sgPostMultMat4( VIEWo, UP );
- // cout << "VIEWo matrix" << endl;
- // print_sgMat4( VIEWo );
// generate the sg view up and forward vectors
sgSetVec3( view_up, VIEWo[0][0], VIEWo[0][1], VIEWo[0][2] );
- // cout << "view = " << view[0] << ","
- // << view[1] << "," << view[2] << endl;
sgSetVec3( right, VIEWo[1][0], VIEWo[1][1], VIEWo[1][2] );
sgSetVec3( forward, VIEWo[2][0], VIEWo[2][1], VIEWo[2][2] );
- // cout << "forward = " << forward[0] << ","
- // << forward[1] << "," << forward[2] << endl;
// generate the pilot offset vector in world coordinates
sgVec3 pilot_offset_world;
<< view_forward[2] );
// VIEW_ROT = LARC_TO_SSG * ( VIEWo * VIEW_OFFSET )
-#ifdef USE_FAST_VIEWROT
fgMakeViewRot( VIEW_ROT, VIEW_OFFSET, VIEWo );
-#else
- // sgMultMat4( VIEW_ROT, VIEW_OFFSET, VIEWo );
- // sgPreMultMat4( VIEW_ROT, LARC_TO_SSG );
- sgCopyMat4( VIEW_ROT, VIEWo );
- sgPostMultMat4( VIEW_ROT, VIEW_OFFSET );
- sgPreMultMat4( VIEW_ROT, LARC_TO_SSG );
-#endif
- // cout << "VIEW_ROT matrix" << endl;
- // print_sgMat4( VIEW_ROT );
sgVec3 trans_vec;
sgAddVec3( trans_vec, view_pos, pilot_offset_world );
// << surface_south[1] << "," << surface_south[2] << endl;
// now calculate the surface east vector
-#define USE_FAST_SURFACE_EAST
-#ifdef USE_FAST_SURFACE_EAST
sgVec3 world_down;
sgNegateVec3(world_down, world_up);
sgVectorProductVec3(surface_east, surface_south, world_down);
-#else
- sgMakeRotMat4( TMP, SGD_PI_2 * SGD_RADIANS_TO_DEGREES, world_up );
- // cout << "sgMat4 TMP" << endl;
- // print_sgMat4( TMP );
- sgXformVec3(surface_east, surface_south, TMP);
-#endif // USE_FAST_SURFACE_EAST
- // cout << "Surface direction directly east " << surface_east[0] << ","
- // << surface_east[1] << "," << surface_east[2] << endl;
- // cout << "Should be close to zero = "
- // << sgScalarProductVec3(surface_south, surface_east) << endl;
set_clean();
}