{ return fromLonLatRad(geod.getLongitudeRad(), geod.getLatitudeRad()); }
- /// Return a quaternion rotation from the earth centered to the
- /// OpenGL/viewer horizontal local frame from given longitude and latitude.
- /// This frame matches the usual OpenGL axis directions. That is the target
- /// frame has an x-axis pointing eastwards, y-axis pointing up and y z-axis
- /// pointing south.
- static SGQuat viewHLRad(T lon, T lat)
- {
- // That bails down to a 3-2-1 euler sequence lon+pi/2, 0, -lat-pi
- // what is here is again the hand optimized version ...
- SGQuat q;
- T xd2 = -T(0.5)*lat - T(0.5)*SGMisc<T>::pi();
- T zd2 = T(0.5)*lon + T(0.25)*SGMisc<T>::pi();
- T Szd2 = sin(zd2);
- T Sxd2 = sin(xd2);
- T Czd2 = cos(zd2);
- T Cxd2 = cos(xd2);
- q.w() = Cxd2*Czd2;
- q.x() = Sxd2*Czd2;
- q.y() = Sxd2*Szd2;
- q.z() = Cxd2*Szd2;
- return q;
- }
- /// Like the above provided for convenience
- static SGQuat viewHLDeg(T lon, T lat)
- { return viewHLRad(SGMisc<T>::deg2rad(lon), SGMisc<T>::deg2rad(lat)); }
- /// Like the above provided for convenience
- static SGQuat viewHL(const SGGeod& geod)
- { return viewHLRad(geod.getLongitudeRad(), geod.getLatitudeRad()); }
-
- /// Convert a quaternion rotation from the simulation frame
- /// to the view (OpenGL) frame. That is it just swaps the axis part of
- /// this current quaternion.
- /// That proves useful when you want to use the euler 3-2-1 sequence
- /// for the usual heading/pitch/roll sequence within the context of
- /// OpenGL/viewer frames.
- static SGQuat simToView(const SGQuat& q)
- { return SGQuat(q.y(), -q.z(), -q.x(), q.w()); }
-
/// Create a quaternion from the angle axis representation
static SGQuat fromAngleAxis(T angle, const SGVec3<T>& axis)
{
- T angle2 = 0.5*angle;
+ T angle2 = T(0.5)*angle;
return fromRealImag(cos(angle2), T(sin(angle2))*axis);
}
T nAxis = norm(axis);
if (nAxis <= SGLimits<T>::min())
return SGQuat::unit();
- T angle2 = 0.5*nAxis;
+ T angle2 = T(0.5)*nAxis;
return fromRealImag(cos(angle2), T(sin(angle2)/nAxis)*axis);
}
+ /// Return a quaternion that rotates the from vector onto the to vector.
static SGQuat fromRotateTo(const SGVec3<T>& from, const SGVec3<T>& to)
{
T nfrom = norm(from);
T nto = norm(to);
- if (nfrom < SGLimits<T>::min() || nto < SGLimits<T>::min())
+ if (nfrom <= SGLimits<T>::min() || nto <= SGLimits<T>::min())
return SGQuat::unit();
return SGQuat::fromRotateToNorm((1/nfrom)*from, (1/nto)*to);
}
- // FIXME more finegrained error behavour.
+ /// Return a quaternion that rotates v1 onto the i1-th unit vector
+ /// and v2 into a plane that is spanned by the i2-th and i1-th unit vector.
static SGQuat fromRotateTo(const SGVec3<T>& v1, unsigned i1,
const SGVec3<T>& v2, unsigned i2)
{
T nrmv1 = norm(v1);
T nrmv2 = norm(v2);
- if (nrmv1 < SGLimits<T>::min() || nrmv2 < SGLimits<T>::min())
+ if (nrmv1 <= SGLimits<T>::min() || nrmv2 <= SGLimits<T>::min())
return SGQuat::unit();
SGVec3<T> nv1 = (1/nrmv1)*v1;
SGVec3<T> nv2 = (1/nrmv2)*v2;
T dv1v2 = dot(nv1, nv2);
- if (fabs(fabs(dv1v2)-1) < SGLimits<T>::epsilon())
+ if (fabs(fabs(dv1v2)-1) <= SGLimits<T>::epsilon())
return SGQuat::unit();
// The target vector for the first rotation
SGVec3<T> tnv2 = q.transform(nv2);
T cosang = dot(nto2, tnv2);
- T cos05ang = T(0.5+0.5*cosang);
+ T cos05ang = T(0.5)+T(0.5)*cosang;
if (cos05ang <= 0)
- cosang = T(0);
+ cosang = 0;
cos05ang = sqrt(cos05ang);
T sig = dot(nto1, cross(nto2, tnv2));
- T sin05ang = T(0.5-0.5*cosang);
+ T sin05ang = T(0.5)-T(0.5)*cosang;
if (sin05ang <= 0)
sin05ang = 0;
sin05ang = copysign(sqrt(sin05ang), sig);
T num = 2*(y()*z() + w()*x());
T den = sqrQW - sqrQX - sqrQY + sqrQZ;
- if (fabs(den) < SGLimits<T>::min() &&
- fabs(num) < SGLimits<T>::min())
+ if (fabs(den) <= SGLimits<T>::min() &&
+ fabs(num) <= SGLimits<T>::min())
xRad = 0;
else
xRad = atan2(num, den);
T tmp = 2*(x()*z() - w()*y());
- if (tmp < -1)
- yRad = 0.5*SGMisc<T>::pi();
- else if (1 < tmp)
- yRad = -0.5*SGMisc<T>::pi();
+ if (tmp <= -1)
+ yRad = T(0.5)*SGMisc<T>::pi();
+ else if (1 <= tmp)
+ yRad = -T(0.5)*SGMisc<T>::pi();
else
yRad = -asin(tmp);
num = 2*(x()*y() + w()*z());
den = sqrQW + sqrQX - sqrQY - sqrQZ;
- if (fabs(den) < SGLimits<T>::min() &&
- fabs(num) < SGLimits<T>::min())
+ if (fabs(den) <= SGLimits<T>::min() &&
+ fabs(num) <= SGLimits<T>::min())
zRad = 0;
else {
T psi = atan2(num, den);
void getAngleAxis(T& angle, SGVec3<T>& axis) const
{
T nrm = norm(*this);
- if (nrm < SGLimits<T>::min()) {
+ if (nrm <= SGLimits<T>::min()) {
angle = 0;
axis = SGVec3<T>(0, 0, 0);
} else {
T rNrm = 1/nrm;
angle = acos(SGMisc<T>::max(-1, SGMisc<T>::min(1, rNrm*w())));
T sAng = sin(angle);
- if (fabs(sAng) < SGLimits<T>::min())
+ if (fabs(sAng) <= SGLimits<T>::min())
axis = SGVec3<T>(1, 0, 0);
else
axis = (rNrm/sAng)*imag(*this);
{
SGQuat deriv;
- deriv.w() = 0.5*(-x()*angVel(0) - y()*angVel(1) - z()*angVel(2));
- deriv.x() = 0.5*( w()*angVel(0) - z()*angVel(1) + y()*angVel(2));
- deriv.y() = 0.5*( z()*angVel(0) + w()*angVel(1) - x()*angVel(2));
- deriv.z() = 0.5*(-y()*angVel(0) + x()*angVel(1) + w()*angVel(2));
+ deriv.w() = T(0.5)*(-x()*angVel(0) - y()*angVel(1) - z()*angVel(2));
+ deriv.x() = T(0.5)*( w()*angVel(0) - z()*angVel(1) + y()*angVel(2));
+ deriv.y() = T(0.5)*( z()*angVel(0) + w()*angVel(1) - x()*angVel(2));
+ deriv.z() = T(0.5)*(-y()*angVel(0) + x()*angVel(1) + w()*angVel(2));
return deriv;
}
// in the interval [-pi,pi]. That means that 0.5*angle is in the interval
// [-pi/2,pi/2]. But in that range the cosine is allways >= 0.
// So we do not need to care for egative roots in the following equation:
- T cos05ang = sqrt(0.5+0.5*cosang);
+ T cos05ang = sqrt(T(0.5)+T(0.5)*cosang);
// Now our assumption of angles <= 90 deg comes in play.
// need the scales now, if the angle is very small, do linear interpolation
// to avoid instabilities
T scale0, scale1;
- if (fabs(o) < SGLimits<T>::epsilon()) {
+ if (fabs(o) <= SGLimits<T>::epsilon()) {
scale0 = 1 - t;
scale1 = t;
} else {