cleaner design, and is something that we are already linking in.
+++ /dev/null
-/* #include "HEADERS.h" */
-/* Copyright 1988, Brown Computer Graphics Group. All Rights Reserved. */
-
-/* --------------------------------------------------------------------------
- * This file contains routines that perform geometry-related operations
- * on matrices.
- * -------------------------------------------------------------------------*/
-
-#include "mat3defs.h"
-
-/* -------------------------- Static Routines ---------------------------- */
-
-/* ------------------------- Internal Routines --------------------------- */
-
-/* -------------------------- Public Routines ---------------------------- */
-
-/*
- * This takes a matrix used to transform points, and returns a corresponding
- * matrix that can be used to transform direction vectors (between points).
- */
-
-void
-MAT3direction_matrix(register double (*result_mat)[4], register double (*mat)[4])
-{
- register int i;
-
- MAT3copy(result_mat, mat);
-
- for (i = 0; i < 4; i++) result_mat[i][3] = result_mat[3][i] = 0.0;
-
- result_mat[3][3] = 1.0;
-}
-
-/*
- * This takes a matrix used to transform points, and returns a corresponding
- * matrix that can be used to transform vectors that must remain perpendicular
- * to planes defined by the points. It is useful when you are transforming
- * some object that has both points and normals in its definition, and you
- * only have the transformation matrix for the points. This routine returns
- * FALSE if the normal matrix is uncomputable. Otherwise, it returns TRUE.
- *
- * Spike sez: "This is the adjoint for the non-homogeneous part of the
- * transformation."
- */
-
-int
-MAT3normal_matrix(register double (*result_mat)[4], register double (*mat)[4])
-{
- register int ret;
- MAT3mat tmp_mat;
-
- MAT3direction_matrix(result_mat, mat);
-
- if ( (ret = MAT3invert(tmp_mat, tmp_mat)) ) {
- MAT3transpose(result_mat, tmp_mat);
- }
-
- return(ret);
-}
-
-/*
- * Sets the given matrix to be a scale matrix for the given vector of
- * scale values.
- */
-
-void
-MAT3scale(double (*result_mat)[4], double *scale)
-{
- MAT3identity(result_mat);
-
- result_mat[0][0] = scale[0];
- result_mat[1][1] = scale[1];
- result_mat[2][2] = scale[2];
-}
-
-/*
- * Sets up a matrix for a rotation about an axis given by the line from
- * (0,0,0) to axis, through an angle (in radians).
- * Looking along the axis toward the origin, the rotation is counter-clockwise.
- */
-
-#define SELECT .7071 /* selection constant (roughly .5*sqrt(2) */
-
-void
-MAT3rotate(double (*result_mat)[4], double *axis, double angle_in_radians)
-{
- MAT3vec naxis, /* Axis of rotation, normalized */
- base2, /* 2nd unit basis vec, perp to axis */
- base3; /* 3rd unit basis vec, perp to axis & base2 */
- double dot;
- MAT3mat base_mat, /* Change-of-basis matrix */
- base_mat_trans; /* Inverse of c-o-b matrix */
- register int i;
-
- /* Step 1: extend { axis } to a basis for 3-space: { axis, base2, base3 }
- * which is orthonormal (all three have unit length, and all three are
- * mutually orthogonal). Also should be oriented, i.e. axis cross base2 =
- * base3, rather than -base3.
- *
- * Method: Find a vector linearly independent from axis. For this we
- * either use the y-axis, or, if that is too close to axis, the
- * z-axis. 'Too close' means that the dot product is too near to 1.
- */
-
- MAT3_COPY_VEC(naxis, axis);
- MAT3_NORMALIZE_VEC(naxis, dot);
-
- if (dot == 0.0) {
- /* ERR_ERROR(MAT3_errid, ERR_SEVERE,
- (ERR_S, "Zero-length axis vector given to MAT3rotate")); */
- return;
- }
-
- MAT3perp_vec(base2, naxis, TRUE);
- MAT3cross_product(base3, naxis, base2);
-
- /* Set up the change-of-basis matrix, and its inverse */
- MAT3identity(base_mat);
- MAT3identity(base_mat_trans);
- MAT3identity(result_mat);
-
- for (i = 0; i < 3; i++){
- base_mat_trans[i][0] = base_mat[0][i] = naxis[i];
- base_mat_trans[i][1] = base_mat[1][i] = base2[i];
- base_mat_trans[i][2] = base_mat[2][i] = base3[i];
- }
-
- /* If T(u) = uR, where R is base_mat, then T(x-axis) = naxis,
- * T(y-axis) = base2, and T(z-axis) = base3. The inverse of base_mat is
- * its transpose. OK?
- */
-
- result_mat[1][1] = result_mat[2][2] = cos(angle_in_radians);
- result_mat[2][1] = -(result_mat[1][2] = sin(angle_in_radians));
-
- MAT3mult(result_mat, base_mat_trans, result_mat);
- MAT3mult(result_mat, result_mat, base_mat);
-}
-
-/*
- * Sets the given matrix to be a translation matrix for the given vector of
- * translation values.
- */
-
-void
-MAT3translate(double (*result_mat)[4], double *trans)
-{
- MAT3identity(result_mat);
-
- result_mat[3][0] = trans[0];
- result_mat[3][1] = trans[1];
- result_mat[3][2] = trans[2];
-}
-
-/*
- * Sets the given matrix to be a shear matrix for the given x and y shear
- * values.
- */
-
-void
-MAT3shear(double (*result_mat)[4], double xshear, double yshear)
-{
- MAT3identity(result_mat);
-
- result_mat[2][0] = xshear;
- result_mat[2][1] = yshear;
-}
-
+++ /dev/null
-/* Copyright 1988, Brown Computer Graphics Group. All Rights Reserved. */
-
-/* --------------------------------------------------------------------------
- * This file contains routines that operate solely on matrices.
- * -------------------------------------------------------------------------*/
-
-#include "mat3defs.h"
-
-/* -------------------------- Static Routines ---------------------------- */
-
-#define SMALL 1e-20 /* Small enough to be considered zero */
-
-/*
- * Shuffles rows in inverse of 3x3. See comment in MAT3_inv3_second_col().
- */
-
-static void
-MAT3_inv3_swap( register double inv[3][3], int row0, int row1, int row2)
-{
- register int i, tempi;
- double temp;
-
-#define SWAP_ROWS(a, b) \
- for (i = 0; i < 3; i++) SWAP(inv[a][i], inv[b][i], temp); \
- SWAP(a, b, tempi)
-
- if (row0 != 0){
- if (row1 == 0) {
- SWAP_ROWS(row0, row1);
- }
- else {
- SWAP_ROWS(row0, row2);
- }
- }
-
- if (row1 != 1) {
- SWAP_ROWS(row1, row2);
- }
-}
-
-/*
- * Does Gaussian elimination on second column.
- */
-
-static int
-MAT3_inv3_second_col (register double source[3][3], register double inv[3][3], int row0)
-{
- register int row1, row2, i1, i2, i;
- double temp;
- double a, b;
-
- /* Find which row to use */
- if (row0 == 0) i1 = 1, i2 = 2;
- else if (row0 == 1) i1 = 0, i2 = 2;
- else i1 = 0, i2 = 1;
-
- /* Find which is larger in abs. val.:the entry in [i1][1] or [i2][1] */
- /* and use that value for pivoting. */
-
- a = source[i1][1]; if (a < 0) a = -a;
- b = source[i2][1]; if (b < 0) b = -b;
- if (a > b) row1 = i1;
- else row1 = i2;
- row2 = (row1 == i1 ? i2 : i1);
-
- /* Scale row1 in source */
- if ((source[row1][1] < SMALL) && (source[row1][1] > -SMALL)) return(FALSE);
- temp = 1.0 / source[row1][1];
- source[row1][1] = 1.0;
- source[row1][2] *= temp; /* source[row1][0] is zero already */
-
- /* Scale row1 in inv */
- inv[row1][row1] = temp; /* it used to be a 1.0 */
- inv[row1][row0] *= temp;
-
- /* Clear column one, source, and make corresponding changes in inv */
-
- for (i = 0; i < 3; i++) if (i != row1) { /* for i = all rows but row1 */
- temp = -source[i][1];
- source[i][1] = 0.0;
- source[i][2] += temp * source[row1][2];
-
- inv[i][row1] = temp * inv[row1][row1];
- inv[i][row0] += temp * inv[row1][row0];
- }
-
- /* Scale row2 in source */
- if ((source[row2][2] < SMALL) && (source[row2][2] > -SMALL)) return(FALSE);
- temp = 1.0 / source[row2][2];
- source[row2][2] = 1.0; /* source[row2][*] is zero already */
-
- /* Scale row2 in inv */
- inv[row2][row2] = temp; /* it used to be a 1.0 */
- inv[row2][row0] *= temp;
- inv[row2][row1] *= temp;
-
- /* Clear column one, source, and make corresponding changes in inv */
- for (i = 0; i < 3; i++) if (i != row2) { /* for i = all rows but row2 */
- temp = -source[i][2];
- source[i][2] = 0.0;
- inv[i][row0] += temp * inv[row2][row0];
- inv[i][row1] += temp * inv[row2][row1];
- inv[i][row2] += temp * inv[row2][row2];
- }
-
- /*
- * Now all is done except that the inverse needs to have its rows shuffled.
- * row0 needs to be moved to inv[0][*], row1 to inv[1][*], etc.
- *
- * We *didn't* do the swapping before the elimination so that we could more
- * easily keep track of what ops are needed to be done in the inverse.
- */
- MAT3_inv3_swap(inv, row0, row1, row2);
-
- return(TRUE);
-}
-
-/*
- * Fast inversion routine for 3 x 3 matrices. - Written by jfh.
- *
- * This takes 30 multiplies/divides, as opposed to 39 for Cramer's Rule.
- * The algorithm consists of performing fast gaussian elimination, by never
- * doing any operations where the result is guaranteed to be zero, or where
- * one operand is guaranteed to be zero. This is done at the cost of clarity,
- * alas.
- *
- * Returns 1 if the inverse was successful, 0 if it failed.
- */
-
-static int
-MAT3_invert3 (register double source[3][3], register double inv[3][3])
-{
- register int i, row0;
- double temp;
- double a, b, c;
-
- inv[0][0] = inv[1][1] = inv[2][2] = 1.0;
- inv[0][1] = inv[0][2] = inv[1][0] = inv[1][2] = inv[2][0] = inv[2][1] = 0.0;
-
- /* attempt to find the largest entry in first column to use as pivot */
- a = source[0][0]; if (a < 0) a = -a;
- b = source[1][0]; if (b < 0) b = -b;
- c = source[2][0]; if (c < 0) c = -c;
-
- if (a > b) {
- if (a > c) row0 = 0;
- else row0 = 2;
- }
- else {
- if (b > c) row0 = 1;
- else row0 = 2;
- }
-
- /* Scale row0 of source */
- if ((source[row0][0] < SMALL) && (source[row0][0] > -SMALL)) return(FALSE);
- temp = 1.0 / source[row0][0];
- source[row0][0] = 1.0;
- source[row0][1] *= temp;
- source[row0][2] *= temp;
-
- /* Scale row0 of inverse */
- inv[row0][row0] = temp; /* other entries are zero -- no effort */
-
- /* Clear column zero of source, and make corresponding changes in inverse */
-
- for (i = 0; i < 3; i++) if (i != row0) { /* for i = all rows but row0 */
- temp = -source[i][0];
- source[i][0] = 0.0;
- source[i][1] += temp * source[row0][1];
- source[i][2] += temp * source[row0][2];
- inv[i][row0] = temp * inv[row0][row0];
- }
-
- /*
- * We've now done gaussian elimination so that the source and
- * inverse look like this:
- *
- * 1 * * * 0 0
- * 0 * * * 1 0
- * 0 * * * 0 1
- *
- * We now proceed to do elimination on the second column.
- */
- if (! MAT3_inv3_second_col(source, inv, row0)) return(FALSE);
-
- return(TRUE);
-}
-
-/*
- * Finds a new pivot for a non-simple 4x4. See comments in MAT3invert().
- */
-
-static int
-MAT3_inv4_pivot (register MAT3mat src, MAT3vec r, double *s, int *swap)
-{
- register int i, j;
- double temp, max;
-
- *swap = -1;
-
- if (MAT3_IS_ZERO(src[3][3])) {
-
- /* Look for a different pivot element: one with largest abs value */
- max = 0.0;
-
- for (i = 0; i < 4; i++) {
- if (src[i][3] > max) max = src[*swap = i][3];
- else if (src[i][3] < -max) max = -src[*swap = i][3];
- }
-
- /* No pivot element available ! */
- if (*swap < 0) return(FALSE);
-
- else for (j = 0; j < 4; j++) SWAP(src[*swap][j], src[3][j], temp);
- }
-
- MAT3_SET_VEC (r, -src[0][3], -src[1][3], -src[2][3]);
-
- *s = 1.0 / src[3][3];
-
- src[0][3] = src[1][3] = src[2][3] = 0.0;
- src[3][3] = 1.0;
-
- MAT3_SCALE_VEC(src[3], src[3], *s);
-
- for (i = 0; i < 3; i++) {
- src[0][i] += r[0] * src[3][i];
- src[1][i] += r[1] * src[3][i];
- src[2][i] += r[2] * src[3][i];
- }
-
- return(TRUE);
-}
-
-/* ------------------------- Internal Routines --------------------------- */
-
-/* -------------------------- Public Routines ---------------------------- */
-
-/*
- * This returns the inverse of the given matrix. The result matrix
- * may be the same as the one to invert.
- *
- * Fast inversion routine for 4 x 4 matrices, written by jfh.
- *
- * Returns 1 if the inverse was successful, 0 if it failed.
- *
- * This routine has been specially tweaked to notice the following:
- * If the matrix has the form
- * * * * 0
- * * * * 0
- * * * * 0
- * * * * 1
- *
- * (as do many matrices in graphics), then we compute the inverse of
- * the upper left 3x3 matrix and use this to find the general inverse.
- *
- * In the event that the right column is not 0-0-0-1, we do gaussian
- * elimination to make it so, then use the 3x3 inverse, and then do
- * our gaussian elimination.
- */
-
-int
-MAT3invert(double (*result_mat)[4], double (*mat)[4])
-{
- MAT3mat src, inv;
- register int i, j, simple;
- double m[3][3], inv3[3][3], s, temp;
- MAT3vec r, t;
- int swap;
-
- MAT3copy(src, mat);
- MAT3identity(inv);
-
- /* If last column is not (0,0,0,1), use special code */
- simple = (mat[0][3] == 0.0 && mat[1][3] == 0.0 &&
- mat[2][3] == 0.0 && mat[3][3] == 1.0);
-
- if (! simple && ! MAT3_inv4_pivot(src, r, &s, &swap)) return(FALSE);
-
- MAT3_COPY_VEC(t, src[3]); /* Translation vector */
-
- /* Copy upper-left 3x3 matrix */
- for (i = 0; i < 3; i++) for (j = 0; j < 3; j++) m[i][j] = src[i][j];
-
- if (! MAT3_invert3(m, inv3)) return(FALSE);
-
- for (i = 0; i < 3; i++) for (j = 0; j < 3; j++) inv[i][j] = inv3[i][j];
-
- for (i = 0; i < 3; i++) for (j = 0; j < 3; j++)
- inv[3][i] -= t[j] * inv3[j][i];
-
- if (! simple) {
-
- /* We still have to undo our gaussian elimination from earlier on */
- /* add r0 * first col to last col */
- /* add r1 * 2nd col to last col */
- /* add r2 * 3rd col to last col */
-
- for (i = 0; i < 4; i++) {
- inv[i][3] += r[0] * inv[i][0] + r[1] * inv[i][1] + r[2] * inv[i][2];
- inv[i][3] *= s;
- }
-
- if (swap >= 0)
- for (i = 0; i < 4; i++) SWAP(inv[i][swap], inv[i][3], temp);
- }
-
- MAT3copy(result_mat, inv);
-
- return(TRUE);
-}
+++ /dev/null
-/* #include "HEADERS.h" */
-/* Copyright 1988, Brown Computer Graphics Group. All Rights Reserved. */
-
-/* --------------------------------------------------------------------------
- * This file contains routines that operate solely on matrices.
- * -------------------------------------------------------------------------*/
-
-
-#ifdef HAVE_CONFIG_H
-# include <config.h>
-#endif
-
-#ifdef WIN32
-# ifndef HAVE_STL_SGI_PORT
-# ifdef __BORLANDC__
-# include <mem.h>
-# else
-# include <memory.h> /* required for memset() and memcpy() */
-# endif
-# endif
-#endif
-
-#include <string.h>
-#include "mat3defs.h"
-
-MAT3mat identityMatrix = {
- { 1.0, 0.0, 0.0, 0.0 },
- { 0.0, 1.0, 0.0, 0.0 },
- { 0.0, 0.0, 1.0, 0.0 },
- { 0.0, 0.0, 0.0, 1.0 }
-};
-
-/* #include "macros.h" */
-
-/* -------------------------- Static Routines ---------------------------- */
-
-/* ------------------------- Internal Routines --------------------------- */
-
-/* -------------------------- Public Routines ---------------------------- */
-
-
-#if !defined( USE_XTRA_MAT3_INLINES )
-
-/*
- * This multiplies two matrices, producing a third, which may the same as
- * either of the first two.
- */
-
-void
-MAT3mult (double (*result_mat)[4], register double (*mat1)[4], register double (*mat2)[4])
-{
- register int i, j;
- MAT3mat tmp_mat;
-
- for (i = 0; i < 4; i++)
- for (j = 0; j < 4; j++)
- tmp_mat[i][j] = (mat1[i][0] * mat2[0][j] +
- mat1[i][1] * mat2[1][j] +
- mat1[i][2] * mat2[2][j] +
- mat1[i][3] * mat2[3][j]);
- MAT3copy (result_mat, tmp_mat);
-}
-#endif // !defined( USE_XTRA_MAT3_INLINES )
-
-/*
- * This returns the transpose of a matrix. The result matrix may be
- * the same as the one to transpose.
- */
-
-void
-MAT3transpose (double (*result_mat)[4], register double (*mat)[4])
-{
- register int i, j;
- MAT3mat tmp_mat;
-
- for (i = 0; i < 4; i++)
- for (j = 0; j < 4; j++)
- tmp_mat[i][j] = mat[j][i];
-
- MAT3copy (result_mat, tmp_mat);
-}
-
-
-/*
- * This prints the given matrix to the given file pointer.
- */
-
-void
-MAT3print(double (*mat)[4], FILE *fp)
-{
- MAT3print_formatted(mat, fp, CNULL, CNULL, CNULL, CNULL);
-}
-
-/*
- * This prints the given matrix to the given file pointer.
- * use the format string to pass to fprintf. head and tail
- * are printed at the beginning and end of each line.
- */
-
-void
-MAT3print_formatted(double (*mat)[4], FILE *fp, char *title, char *head, char *format, char *tail)
-{
- register int i, j;
-
- /* This is to allow this to be called easily from a debugger */
- if (fp == NULL) fp = stderr;
-
- if (title == NULL) title = "MAT3 matrix:\n";
- if (head == NULL) head = " ";
- if (format == NULL) format = "%#8.4lf ";
- if (tail == NULL) tail = "\n";
-
- (void) fprintf(fp, title);
-
- for (i = 0; i < 4; i++) {
- (void) fprintf(fp, head);
- for (j = 0; j < 4; j++) (void) fprintf(fp, format, mat[i][j]);
- (void) fprintf(fp, tail);
- }
-}
+++ /dev/null
-/* Copyright 1988, Brown Computer Graphics Group. All Rights Reserved. */
-
-/* --------------------------------------------------------------------------
- * This file contains routines that operate on matrices and vectors, or
- * vectors and vectors.
- * -------------------------------------------------------------------------*/
-
-/* #include "sphigslocal.h" */
-
-/* -------------------------- Static Routines ---------------------------- */
-
-/* ------------------------- Internal Routines --------------------------- */
-
-/* -------------------------- Public Routines ---------------------------- */
-
-/*
- * Multiplies a vector by a matrix, setting the result vector.
- * It assumes all homogeneous coordinates are 1.
- * The two vectors involved may be the same.
- */
-
-#include "mat3.h"
-
-#ifndef TRUE
-# define TRUE 1
-#endif
-
-#ifndef FALSE
-# define FALSE 0
-#endif
-
-#if !defined( USE_XTRA_MAT3_INLINES )
-
-void
-MAT3mult_vec(double *result_vec, register double *vec, register double (*mat)[4])
-{
- MAT3vec tempvec;
- register double *temp = tempvec;
-
- temp[0] = vec[0] * mat[0][0] + vec[1] * mat[1][0] +
- vec[2] * mat[2][0] + mat[3][0];
- temp[1] = vec[0] * mat[0][1] + vec[1] * mat[1][1] +
- vec[2] * mat[2][1] + mat[3][1];
- temp[2] = vec[0] * mat[0][2] + vec[1] * mat[1][2] +
- vec[2] * mat[2][2] + mat[3][2];
-
- MAT3_COPY_VEC(result_vec, temp);
-}
-#endif // !defined( USE_XTRA_MAT3_INLINES )
-
-/*
- * Multiplies a vector of size 4 by a matrix, setting the result vector.
- * The fourth element of the vector is the homogeneous coordinate, which
- * may or may not be 1. If the "normalize" parameter is TRUE, then the
- * result vector will be normalized so that the homogeneous coordinate is 1.
- * The two vectors involved may be the same.
- * This returns zero if the vector was to be normalized, but couldn't be.
- */
-
-int
-MAT3mult_hvec(double *result_vec, register double *vec, register double (*mat)[4], int normalize)
-{
- MAT3hvec tempvec;
- double norm_fac;
- register double *temp = tempvec;
- register int ret = TRUE;
-
- temp[0] = vec[0] * mat[0][0] + vec[1] * mat[1][0] +
- vec[2] * mat[2][0] + vec[3] * mat[3][0];
- temp[1] = vec[0] * mat[0][1] + vec[1] * mat[1][1] +
- vec[2] * mat[2][1] + vec[3] * mat[3][1];
- temp[2] = vec[0] * mat[0][2] + vec[1] * mat[1][2] +
- vec[2] * mat[2][2] + vec[3] * mat[3][2];
- temp[3] = vec[0] * mat[0][3] + vec[1] * mat[1][3] +
- vec[2] * mat[2][3] + vec[3] * mat[3][3];
-
- /* Normalize if asked for, possible, and necessary */
- if (normalize) {
- if (MAT3_IS_ZERO(temp[3])) {
-#ifndef THINK_C
- fprintf (stderr,
- "Can't normalize vector: homogeneous coordinate is 0");
-#endif
- ret = FALSE;
- }
- else {
- norm_fac = 1.0 / temp[3];
- MAT3_SCALE_VEC(result_vec, temp, norm_fac);
- result_vec[3] = 1.0;
- }
- }
- else MAT3_COPY_HVEC(result_vec, temp);
-
- return(ret);
-}
-
-#if !defined( USE_XTRA_MAT3_INLINES )
-
-/*
- * Sets the first vector to be the cross-product of the last two vectors.
- */
-
-void
-MAT3cross_product(double *result_vec, register double *vec1, register double *vec2)
-{
- MAT3vec tempvec;
- register double *temp = tempvec;
-
- temp[0] = vec1[1] * vec2[2] - vec1[2] * vec2[1];
- temp[1] = vec1[2] * vec2[0] - vec1[0] * vec2[2];
- temp[2] = vec1[0] * vec2[1] - vec1[1] * vec2[0];
-
- MAT3_COPY_VEC(result_vec, temp);
-}
-#endif // !defined( USE_XTRA_MAT3_INLINES )
-
-/*
- * Finds a vector perpendicular to vec and stores it in result_vec.
- * Method: take any vector (we use <0,1,0>) and subtract the
- * portion of it pointing in the vec direction. This doesn't
- * work if vec IS <0,1,0> or is very near it. So if this is
- * the case, use <0,0,1> instead.
- * If "is_unit" is TRUE, the given vector is assumed to be unit length.
- */
-
-#define SELECT .7071 /* selection constant (roughly .5*sqrt(2) */
-
-void
-MAT3perp_vec(double *result_vec, double *vec, int is_unit)
-{
- MAT3vec norm;
- double dot;
-
- MAT3_SET_VEC(result_vec, 0.0, 1.0, 0.0);
-
- MAT3_COPY_VEC(norm, vec);
-
- if (! is_unit) MAT3_NORMALIZE_VEC(norm, dot);
-
- /* See if vector is too close to <0,1,0>. If so, use <0,0,1> */
- if ((dot = MAT3_DOT_PRODUCT(norm, result_vec)) > SELECT || dot < -SELECT) {
- result_vec[1] = 0.0;
- result_vec[2] = 1.0;
- dot = MAT3_DOT_PRODUCT(norm, result_vec);
- }
-
- /* Subtract off non-perpendicular part */
- result_vec[0] -= dot * norm[0];
- result_vec[1] -= dot * norm[1];
- result_vec[2] -= dot * norm[2];
-
- /* Make result unit length */
- MAT3_NORMALIZE_VEC(result_vec, dot);
-}
fg_types.hxx \
interpolater.hxx \
leastsqs.hxx \
- mat3.h \
point3d.hxx \
polar3d.hxx \
vector.hxx
EXTRA_DIST = linintp2.h linintp2.inl sphrintp.h sphrintp.inl
libsgmath_a_SOURCES = \
- MAT3geom.c \
- MAT3inv.c \
- MAT3mat.c \
- MAT3vec.c \
fg_geodesy.cxx \
fg_random.c \
interpolater.cxx \
leastsqs.cxx \
- mat3defs.h mat3err.h \
polar3d.cxx \
vector.cxx
+++ /dev/null
-/* Copyright 1988, Brown Computer Graphics Group. All Rights Reserved. */
-
-/* -------------------------------------------------------------------------
- Public MAT3 include file
- ------------------------------------------------------------------------- */
-
-#ifndef MAT3_HAS_BEEN_INCLUDED
-#define MAT3_HAS_BEEN_INCLUDED
-
-/* ----------------------------- Constants ------------------------------ */
-
-/*
- * Make sure the math library .h file is included, in case it wasn't.
- */
-
-#ifndef HUGE
-#include <math.h>
-#endif
-#include <stdio.h>
-
-#include <string.h>
-#include <simgear/math/fg_memory.h>
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-
-#define MAT3_DET0 -1 /* Indicates singular mat */
-#define MAT3_EPSILON 1e-12 /* Close enough to zero */
-
-#ifdef M_PI
-# define MAT3_PI M_PI
-#else
-# define MAT3_PI 3.14159265358979323846
-#endif
-
-#define USE_XTRA_MAT3_INLINES
-
-#if defined(i386)
-#define USE_X86_ASM
-#endif
-
-#if defined(USE_X86_ASM)
-static __inline__ int FloatToInt(float f)
-{
- int r;
- __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
- return r;
-}
-#elif defined(__MSC__) && defined(__WIN32__)
-static __inline int FloatToInt(float f)
-{
- int r;
- _asm {
- fld f
- fistp r
- }
- return r;
-}
-#else
-#define FloatToInt(F) ((int) ((F) < 0.0f ? (F)-0.5f : (F)+0.5f))
-#endif
-
-/* ------------------------------ Types --------------------------------- */
-
-typedef double MAT3mat[4][4]; /* 4x4 matrix */
-typedef double MAT3vec[3]; /* Vector */
-typedef double MAT3hvec[4]; /* Vector with homogeneous coord */
-
-/* ------------------------------ Macros -------------------------------- */
-
-extern MAT3mat identityMatrix;
-
-/* Tests if a number is within EPSILON of zero */
-#define MAT3_IS_ZERO(N) ((N) < MAT3_EPSILON && (N) > -MAT3_EPSILON)
-
-/* Sets a vector to the three given values */
-#define MAT3_SET_VEC(V,X,Y,Z) ((V)[0]=(X), (V)[1]=(Y), (V)[2]=(Z))
-
-/* Tests a vector for all components close to zero */
-#define MAT3_IS_ZERO_VEC(V) (MAT3_IS_ZERO((V)[0]) && \
- MAT3_IS_ZERO((V)[1]) && \
- MAT3_IS_ZERO((V)[2]))
-
-/* Dot product of two vectors */
-#define MAT3_DOT_PRODUCT(V1,V2) \
- ((V1)[0]*(V2)[0] + (V1)[1]*(V2)[1] + (V1)[2]*(V2)[2])
-
-/* Copy one vector to other */
-#define MAT3_COPY_VEC(TO,FROM) ((TO)[0] = (FROM)[0], \
- (TO)[1] = (FROM)[1], \
- (TO)[2] = (FROM)[2])
-
-/* Normalize vector to unit length, using TEMP as temporary variable.
- * TEMP will be zero if vector has zero length */
-#define MAT3_NORMALIZE_VEC(V,TEMP) \
- if ((TEMP = sqrt(MAT3_DOT_PRODUCT(V,V))) > MAT3_EPSILON) { \
- TEMP = 1.0 / TEMP; \
- MAT3_SCALE_VEC(V,V,TEMP); \
- } else TEMP = 0.0
-
-/* Scale vector by given factor, storing result vector in RESULT_V */
-#define MAT3_SCALE_VEC(RESULT_V,V,SCALE) \
- MAT3_SET_VEC(RESULT_V, (V)[0]*(SCALE), (V)[1]*(SCALE), (V)[2]*(SCALE))
-
-/* Adds vectors V1 and V2, storing result in RESULT_V */
-#define MAT3_ADD_VEC(RESULT_V,V1,V2) \
- MAT3_SET_VEC(RESULT_V, (V1)[0]+(V2)[0], (V1)[1]+(V2)[1], \
- (V1)[2]+(V2)[2])
-
-/* Subtracts vector V2 from V1, storing result in RESULT_V */
-#define MAT3_SUB_VEC(RESULT_V,V1,V2) \
- MAT3_SET_VEC(RESULT_V, (V1)[0]-(V2)[0], (V1)[1]-(V2)[1], \
- (V1)[2]-(V2)[2])
-
-/* Multiplies vectors V1 and V2, storing result in RESULT_V */
-#define MAT3_MULT_VEC(RESULT_V,V1,V2) \
- MAT3_SET_VEC(RESULT_V, (V1)[0]*(V2)[0], (V1)[1]*(V2)[1], \
- (V1)[2]*(V2)[2])
-
-/* Sets RESULT_V to the linear combination of V1 and V2, scaled by
- * SCALE1 and SCALE2, respectively */
-#define MAT3_LINEAR_COMB(RESULT_V,SCALE1,V1,SCALE2,V2) \
- MAT3_SET_VEC(RESULT_V, (SCALE1)*(V1)[0] + (SCALE2)*(V2)[0], \
- (SCALE1)*(V1)[1] + (SCALE2)*(V2)[1], \
- (SCALE1)*(V1)[2] + (SCALE2)*(V2)[2])
-
-/* Several of the vector macros are useful for homogeneous-coord vectors */
-#define MAT3_SET_HVEC(V,X,Y,Z,W) ((V)[0]=(X), (V)[1]=(Y), \
- (V)[2]=(Z), (V)[3]=(W))
-
-#define MAT3_COPY_HVEC(TO,FROM) ((TO)[0] = (FROM)[0], \
- (TO)[1] = (FROM)[1], \
- (TO)[2] = (FROM)[2], \
- (TO)[3] = (FROM)[3])
-
-#define MAT3_SCALE_HVEC(RESULT_V,V,SCALE) \
- MAT3_SET_HVEC(RESULT_V, (V)[0]*(SCALE), (V)[1]*(SCALE), \
- (V)[2]*(SCALE), (V)[3]*(SCALE))
-
-#define MAT3_ADD_HVEC(RESULT_V,V1,V2) \
- MAT3_SET_HVEC(RESULT_V, (V1)[0]+(V2)[0], (V1)[1]+(V2)[1], \
- (V1)[2]+(V2)[2], (V1)[3]+(V2)[3])
-
-#define MAT3_SUB_HVEC(RESULT_V,V1,V2) \
- MAT3_SET_HVEC(RESULT_V, (V1)[0]-(V2)[0], (V1)[1]-(V2)[1], \
- (V1)[2]-(V2)[2], (V1)[3]-(V2)[3])
-
-#define MAT3_MULT_HVEC(RESULT_V,V1,V2) \
- MAT3_SET_HVEC(RESULT_V, (V1)[0]*(V2)[0], (V1)[1]*(V2)[1], \
- (V1)[2]*(V2)[2], (V1)[3]*(V2)[3])
-
-/* ------------------------------ Entries ------------------------------- */
-
-
-#define MAT3identity(mat) fgmemcpy( mat, identityMatrix, sizeof(MAT3mat) )
-#define MAT3zero(mat) fgmemzero( mat, sizeof(MAT3mat) )
-#define MAT3copy(to, from) fgmemcpy( to, from, sizeof(MAT3mat) )
-
-#if defined( USE_XTRA_MAT3_INLINES )
-
-# define MAT3mult_vec( result_vec, vec, mat) { \
- MAT3vec tempvec; \
- tempvec[0]=vec[0]*mat[0][0]+vec[1]*mat[1][0]+vec[2]*mat[2][0]+mat[3][0]; \
- tempvec[1]=vec[0]*mat[0][1]+vec[1]*mat[1][1]+vec[2]*mat[2][1]+mat[3][1]; \
- tempvec[2]=vec[0]*mat[0][2]+vec[1]*mat[1][2]+vec[2]*mat[2][2]+mat[3][2]; \
- result_vec[0] = tempvec[0]; \
- result_vec[1] = tempvec[1]; \
- result_vec[2] = tempvec[2]; \
-}
-
-# define MAT3cross_product(result_vec, vec1, vec2) { \
- MAT3vec tempvec; \
- tempvec[0] = vec1[1] * vec2[2] - vec1[2] * vec2[1]; \
- tempvec[1] = vec1[2] * vec2[0] - vec1[0] * vec2[2]; \
- tempvec[2] = vec1[0] * vec2[1] - vec1[1] * vec2[0]; \
- result_vec[0] = tempvec[0]; \
- result_vec[1] = tempvec[1]; \
- result_vec[2] = tempvec[2]; \
-}
-
-# define MAT3mult( result_mat, mat1, mat2) { \
- register int i, j; \
- MAT3mat tmp_mat; \
- for (i = 0; i < 4; i++) \
- for (j = 0; j < 4; j++) \
- tmp_mat[i][j] = (mat1[i][0] * mat2[0][j] + \
- mat1[i][1] * mat2[1][j] + \
- mat1[i][2] * mat2[2][j] + \
- mat1[i][3] * mat2[3][j]); \
- fgmemcpy(result_mat, tmp_mat, sizeof(MAT3mat)); \
-}
-
-#else // !defined( USE_XTRA_MAT3_INLINES )
-
-/* In MAT3mat.c */
-void MAT3mult(MAT3mat result, MAT3mat, MAT3mat);
-void MAT3mult_vec(MAT3vec result_vec, MAT3vec vec, MAT3mat mat);
-void MAT3cross_product(MAT3vec result,MAT3vec,MAT3vec);
-
-#endif // defined( USE_XTRA_MAT3_INLINES )
-
-/* In MAT3geom.c */
-void MAT3direction_matrix (MAT3mat result_mat, MAT3mat mat);
-int MAT3normal_matrix (MAT3mat result_mat, MAT3mat mat);
-void MAT3rotate (MAT3mat result_mat, MAT3vec axis, double angle_in_radians);
-void MAT3translate (MAT3mat result_mat, MAT3vec trans);
-void MAT3scale (MAT3mat result_mat, MAT3vec scale);
-void MAT3shear(MAT3mat result_mat, double xshear, double yshear);
-
-void MAT3transpose (MAT3mat result, MAT3mat);
-int MAT3invert (MAT3mat result, MAT3mat);
-void MAT3print (MAT3mat, FILE *fp);
-void MAT3print_formatted (MAT3mat, FILE *fp,
- char *title, char *head, char *format, char *tail);
-int MAT3equal( void );
-double MAT3trace( void );
-int MAT3power( void );
-int MAT3column_reduce( void );
-int MAT3kernel_basis( void );
-
-/* In MAT3vec.c */
-int MAT3mult_hvec (MAT3hvec result_vec, MAT3hvec vec, MAT3mat mat, int normalize);
-void MAT3perp_vec(MAT3vec result_vec, MAT3vec vec, int is_unit);
-
-#ifdef __cplusplus
-}
-#endif
-
-
-#endif /* MAT3_HAS_BEEN_INCLUDED */
-
+++ /dev/null
-/* Copyright 1988, Brown Computer Graphics Group. All Rights Reserved. */
-
-
-#ifndef _MAT3DEFS_H
-#define _MAT3DEFS_H
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#include <stdio.h>
-/* #include <Math/mat3err.h> */
-#include "mat3.h"
-
-/* ----------------------------- Constants ------------------------------ */
-
-#define FALSE 0
-#define TRUE 1
-
-#define CNULL ((char *) NULL)
-
-/* ------------------------------ Macros -------------------------------- */
-
-#define ALLOCN(P,T,N,M) \
- if ((P = (T *) malloc((unsigned) (N) * sizeof(T))) == NULL) \
- ERR_ERROR(MAT3_errid, ERR_FATAL, (ERR_ALLOC1, M)); \
- else
-
-#define FREE(P) free((char *) (P))
-
-#define ABS(A) ((A) > 0 ? (A) : -(A))
-#define MIN(A,B) ((A) < (B) ? (A) : (B))
-#define MAX(A,B) ((A) > (B) ? (A) : (B))
-
-#define SWAP(A,B,T) (T = A, A = B, B = T)
-
-/* Is N within EPS of zero ? */
-#define IS_ZERO(N,EPS) ((N) < EPS && (N) > -EPS)
-
-/* Macros for lu routines */
-#define LU_PERMUTE(p,i,j) { int LU_T; LU_T = p[i]; p[i] = p[j]; p[j] = LU_T; }
-
-/* ------------------------- Internal Entries ---------------------------- */
-
-/* ------------------------- Global Variables ---------------------------- */
-
-/* extern ERRid *MAT3_errid; */
-
-
-#ifdef __cplusplus
-}
-#endif
-
-
-#endif /* _MAT3DEFS_H */
+++ /dev/null
-#ifndef _MAT3ERR_H
-#define _MAT3ERR_H
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-
-#include "sph_errtypes.h"
-
-#ifdef THINK_C
-/* We hide this from gnu's compiler, which doesn't understand it. */
-void SPH__error (int errtype, ...);
-#endif
-
-
-#define ERR_ERROR(A,B,C) \
- if (1) {char cstr[256]; sprintf C; SPH__error(ERR_MAT3_PACKAGE, cstr); } else
-
-
-#define ERR_S cstr,"%s\n"
-#define ERR_SI cstr,"%s: %d\n"
-#define ERR_SS cstr,"%s: %s\n"
-
-#define ERR_SEVERE 0
-#define ERR_FATAL 0
-
-#define ERR_ALLOC1 0
-
-typedef int ERRid;
-
-#define ERRregister_package(S) 100
-
-
-#ifdef __cplusplus
-}
-#endif
-
-
-#endif /* _MAT3ERR_H */
#include "vector.hxx"
-#include "mat3.h"
-
-
-// Map a vector onto the plane specified by normal
-void map_vec_onto_cur_surface_plane(MAT3vec normal, MAT3vec v0, MAT3vec vec,
- MAT3vec result)
-{
- MAT3vec u1, v, tmp;
-
- // calculate a vector "u1" representing the shortest distance from
- // the plane specified by normal and v0 to a point specified by
- // "vec". "u1" represents both the direction and magnitude of
- // this desired distance.
-
- // u1 = ( (normal <dot> vec) / (normal <dot> normal) ) * normal
-
- MAT3_SCALE_VEC( u1,
- normal,
- ( MAT3_DOT_PRODUCT(normal, vec) /
- MAT3_DOT_PRODUCT(normal, normal)
- )
- );
-
- // printf(" vec = %.2f, %.2f, %.2f\n", vec[0], vec[1], vec[2]);
- // printf(" v0 = %.2f, %.2f, %.2f\n", v0[0], v0[1], v0[2]);
- // printf(" u1 = %.2f, %.2f, %.2f\n", u1[0], u1[1], u1[2]);
-
- // calculate the vector "v" which is the vector "vec" mapped onto
- // the plane specified by "normal" and "v0".
-
- // v = v0 + vec - u1
-
- MAT3_ADD_VEC(tmp, v0, vec);
- MAT3_SUB_VEC(v, tmp, u1);
- // printf(" v = %.2f, %.2f, %.2f\n", v[0], v[1], v[2]);
-
- // Calculate the vector "result" which is "v" - "v0" which is a
- // directional vector pointing from v0 towards v
-
- // result = v - v0
-
- MAT3_SUB_VEC(result, v, v0);
- // printf(" result = %.2f, %.2f, %.2f\n",
- // result[0], result[1], result[2]);
-}
-
-
-// Given a point p, and a line through p0 with direction vector d,
-// find the shortest distance from the point to the line
-double fgPointLine(MAT3vec p, MAT3vec p0, MAT3vec d) {
- MAT3vec u, u1, v;
- double ud, dd, tmp;
-
- // u = p - p0
- MAT3_SUB_VEC(u, p, p0);
-
- // calculate the projection, u1, of u along d.
- // u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
- ud = MAT3_DOT_PRODUCT(u, d);
- dd = MAT3_DOT_PRODUCT(d, d);
- tmp = ud / dd;
-
- MAT3_SCALE_VEC(u1, d, tmp);;
-
- // v = u - u1 = vector from closest point on line, p1, to the
- // original point, p.
- MAT3_SUB_VEC(v, u, u1);
-
- return sqrt(MAT3_DOT_PRODUCT(v, v));
-}
-
-
-// Given a point p, and a line through p0 with direction vector d,
-// find the shortest distance (squared) from the point to the line
-double fgPointLineSquared(MAT3vec p, MAT3vec p0, MAT3vec d) {
- MAT3vec u, u1, v;
- double ud, dd, tmp;
-
- // u = p - p0
- MAT3_SUB_VEC(u, p, p0);
-
- // calculate the projection, u1, of u along d.
- // u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
- ud = MAT3_DOT_PRODUCT(u, d);
- dd = MAT3_DOT_PRODUCT(d, d);
- tmp = ud / dd;
-
- MAT3_SCALE_VEC(u1, d, tmp);;
-
- // v = u - u1 = vector from closest point on line, p1, to the
- // original point, p.
- MAT3_SUB_VEC(v, u, u1);
-
- return ( MAT3_DOT_PRODUCT(v, v) );
-}
-
// Given a point p, and a line through p0 with direction vector d,
// find the shortest distance (squared) from the point to the line
#include <plib/sg.h>
-#include <simgear/math/mat3.h>
-
-
-// Map a vector onto the plane specified by normal
-void map_vec_onto_cur_surface_plane( MAT3vec normal,
- MAT3vec v0,
- MAT3vec vec,
- MAT3vec result );
-
inline void sgmap_vec_onto_cur_surface_plane( sgVec3 normal,
sgVec3 v0,
}
-// Given a point p, and a line through p0 with direction vector d,
-// find the shortest distance from the point to the line
-double fgPointLine(MAT3vec p, MAT3vec p0, MAT3vec d);
-
-
-// Given a point p, and a line through p0 with direction vector d,
-// find the shortest distance (squared) from the point to the line
-double fgPointLineSquared(MAT3vec p, MAT3vec p0, MAT3vec d);
-
-
// Given a point p, and a line through p0 with direction vector d,
// find the shortest distance (squared) from the point to the line
double sgPointLineDistSquared( const sgVec3 p, const sgVec3 p0,