From: frohlich Date: Sat, 5 Sep 2009 12:25:51 +0000 (+0000) Subject: Add some comments. X-Git-Url: https://git.mxchange.org/?a=commitdiff_plain;h=f141cc28b07d22fe97e5924a478d9a6ffef1e77c;p=simgear.git Add some comments. Make sure floating point constants do not introduce useless upcasts. Remove now unused and not really usefull method. Modified Files: simgear/math/SGQuat.hxx --- diff --git a/simgear/math/SGQuat.hxx b/simgear/math/SGQuat.hxx index 387951da..b466d896 100644 --- a/simgear/math/SGQuat.hxx +++ b/simgear/math/SGQuat.hxx @@ -132,48 +132,10 @@ public: { return fromLonLatRad(geod.getLongitudeRad(), geod.getLatitudeRad()); } - /// Return a quaternion rotation from the earth centered to the - /// OpenGL/viewer horizontal local frame from given longitude and latitude. - /// This frame matches the usual OpenGL axis directions. That is the target - /// frame has an x-axis pointing eastwards, y-axis pointing up and y z-axis - /// pointing south. - static SGQuat viewHLRad(T lon, T lat) - { - // That bails down to a 3-2-1 euler sequence lon+pi/2, 0, -lat-pi - // what is here is again the hand optimized version ... - SGQuat q; - T xd2 = -T(0.5)*lat - T(0.5)*SGMisc::pi(); - T zd2 = T(0.5)*lon + T(0.25)*SGMisc::pi(); - T Szd2 = sin(zd2); - T Sxd2 = sin(xd2); - T Czd2 = cos(zd2); - T Cxd2 = cos(xd2); - q.w() = Cxd2*Czd2; - q.x() = Sxd2*Czd2; - q.y() = Sxd2*Szd2; - q.z() = Cxd2*Szd2; - return q; - } - /// Like the above provided for convenience - static SGQuat viewHLDeg(T lon, T lat) - { return viewHLRad(SGMisc::deg2rad(lon), SGMisc::deg2rad(lat)); } - /// Like the above provided for convenience - static SGQuat viewHL(const SGGeod& geod) - { return viewHLRad(geod.getLongitudeRad(), geod.getLatitudeRad()); } - - /// Convert a quaternion rotation from the simulation frame - /// to the view (OpenGL) frame. That is it just swaps the axis part of - /// this current quaternion. - /// That proves useful when you want to use the euler 3-2-1 sequence - /// for the usual heading/pitch/roll sequence within the context of - /// OpenGL/viewer frames. - static SGQuat simToView(const SGQuat& q) - { return SGQuat(q.y(), -q.z(), -q.x(), q.w()); } - /// Create a quaternion from the angle axis representation static SGQuat fromAngleAxis(T angle, const SGVec3& axis) { - T angle2 = 0.5*angle; + T angle2 = T(0.5)*angle; return fromRealImag(cos(angle2), T(sin(angle2))*axis); } @@ -188,33 +150,35 @@ public: T nAxis = norm(axis); if (nAxis <= SGLimits::min()) return SGQuat::unit(); - T angle2 = 0.5*nAxis; + T angle2 = T(0.5)*nAxis; return fromRealImag(cos(angle2), T(sin(angle2)/nAxis)*axis); } + /// Return a quaternion that rotates the from vector onto the to vector. static SGQuat fromRotateTo(const SGVec3& from, const SGVec3& to) { T nfrom = norm(from); T nto = norm(to); - if (nfrom < SGLimits::min() || nto < SGLimits::min()) + if (nfrom <= SGLimits::min() || nto <= SGLimits::min()) return SGQuat::unit(); return SGQuat::fromRotateToNorm((1/nfrom)*from, (1/nto)*to); } - // FIXME more finegrained error behavour. + /// Return a quaternion that rotates v1 onto the i1-th unit vector + /// and v2 into a plane that is spanned by the i2-th and i1-th unit vector. static SGQuat fromRotateTo(const SGVec3& v1, unsigned i1, const SGVec3& v2, unsigned i2) { T nrmv1 = norm(v1); T nrmv2 = norm(v2); - if (nrmv1 < SGLimits::min() || nrmv2 < SGLimits::min()) + if (nrmv1 <= SGLimits::min() || nrmv2 <= SGLimits::min()) return SGQuat::unit(); SGVec3 nv1 = (1/nrmv1)*v1; SGVec3 nv2 = (1/nrmv2)*v2; T dv1v2 = dot(nv1, nv2); - if (fabs(fabs(dv1v2)-1) < SGLimits::epsilon()) + if (fabs(fabs(dv1v2)-1) <= SGLimits::epsilon()) return SGQuat::unit(); // The target vector for the first rotation @@ -235,12 +199,12 @@ public: SGVec3 tnv2 = q.transform(nv2); T cosang = dot(nto2, tnv2); - T cos05ang = T(0.5+0.5*cosang); + T cos05ang = T(0.5)+T(0.5)*cosang; if (cos05ang <= 0) - cosang = T(0); + cosang = 0; cos05ang = sqrt(cos05ang); T sig = dot(nto1, cross(nto2, tnv2)); - T sin05ang = T(0.5-0.5*cosang); + T sin05ang = T(0.5)-T(0.5)*cosang; if (sin05ang <= 0) sin05ang = 0; sin05ang = copysign(sqrt(sin05ang), sig); @@ -303,24 +267,24 @@ public: T num = 2*(y()*z() + w()*x()); T den = sqrQW - sqrQX - sqrQY + sqrQZ; - if (fabs(den) < SGLimits::min() && - fabs(num) < SGLimits::min()) + if (fabs(den) <= SGLimits::min() && + fabs(num) <= SGLimits::min()) xRad = 0; else xRad = atan2(num, den); T tmp = 2*(x()*z() - w()*y()); - if (tmp < -1) - yRad = 0.5*SGMisc::pi(); - else if (1 < tmp) - yRad = -0.5*SGMisc::pi(); + if (tmp <= -1) + yRad = T(0.5)*SGMisc::pi(); + else if (1 <= tmp) + yRad = -T(0.5)*SGMisc::pi(); else yRad = -asin(tmp); num = 2*(x()*y() + w()*z()); den = sqrQW + sqrQX - sqrQY - sqrQZ; - if (fabs(den) < SGLimits::min() && - fabs(num) < SGLimits::min()) + if (fabs(den) <= SGLimits::min() && + fabs(num) <= SGLimits::min()) zRad = 0; else { T psi = atan2(num, den); @@ -343,14 +307,14 @@ public: void getAngleAxis(T& angle, SGVec3& axis) const { T nrm = norm(*this); - if (nrm < SGLimits::min()) { + if (nrm <= SGLimits::min()) { angle = 0; axis = SGVec3(0, 0, 0); } else { T rNrm = 1/nrm; angle = acos(SGMisc::max(-1, SGMisc::min(1, rNrm*w()))); T sAng = sin(angle); - if (fabs(sAng) < SGLimits::min()) + if (fabs(sAng) <= SGLimits::min()) axis = SGVec3(1, 0, 0); else axis = (rNrm/sAng)*imag(*this); @@ -466,10 +430,10 @@ public: { SGQuat deriv; - deriv.w() = 0.5*(-x()*angVel(0) - y()*angVel(1) - z()*angVel(2)); - deriv.x() = 0.5*( w()*angVel(0) - z()*angVel(1) + y()*angVel(2)); - deriv.y() = 0.5*( z()*angVel(0) + w()*angVel(1) - x()*angVel(2)); - deriv.z() = 0.5*(-y()*angVel(0) + x()*angVel(1) + w()*angVel(2)); + deriv.w() = T(0.5)*(-x()*angVel(0) - y()*angVel(1) - z()*angVel(2)); + deriv.x() = T(0.5)*( w()*angVel(0) - z()*angVel(1) + y()*angVel(2)); + deriv.y() = T(0.5)*( z()*angVel(0) + w()*angVel(1) - x()*angVel(2)); + deriv.z() = T(0.5)*(-y()*angVel(0) + x()*angVel(1) + w()*angVel(2)); return deriv; } @@ -494,7 +458,7 @@ private: // in the interval [-pi,pi]. That means that 0.5*angle is in the interval // [-pi/2,pi/2]. But in that range the cosine is allways >= 0. // So we do not need to care for egative roots in the following equation: - T cos05ang = sqrt(0.5+0.5*cosang); + T cos05ang = sqrt(T(0.5)+T(0.5)*cosang); // Now our assumption of angles <= 90 deg comes in play. @@ -734,7 +698,7 @@ interpolate(T t, const SGQuat& src, const SGQuat& dst) // need the scales now, if the angle is very small, do linear interpolation // to avoid instabilities T scale0, scale1; - if (fabs(o) < SGLimits::epsilon()) { + if (fabs(o) <= SGLimits::epsilon()) { scale0 = 1 - t; scale1 = t; } else {