

Acknowledgements

Example Program: apt-p2pCustomized DHT

Proposed Model

Incremental Deployment

Requirements

Problems to be Solved

Leveraging Altruistic Peers to Reduce the Bandwidth Costs of Free Content Downloads
Cameron Dale (camerond@cs.sfu.ca) and Jiangchuan Liu, Simon Fraser University

A few of the groups that could benefit

Cygwin

Client

Server Server ServerServer

The Current Situation

Client

Client

Client

Client

Client Client

Client

Client

Client

Client Client

Client Client

Client

Client

Client

Client

Mirror Network

Client

Client

Client
Client

Client

Server Server ServerServer

Early P2P System

Client

Client

Client

Client Client

Client

Client

Client

Client

Client

Client

Mirror Network

Client

Client

Peer

Peer

Peer

Peer
Peer

PeerPeer

Peer

Server Server ServerServer

Final Deployment

Client Client Client

Mirror Network

Peer

Peer

Peer

Peer
Peer

PeerPeer

Peer

Peer

Peer

Peer

Peer

Peer

Peer
Peer

Peer

Peer
Peer

Peer

Incremental deployment as users slowly adopt the new P2P system.
During the deployment the users are still fully functional.

Eventually word spreads and the P2P system gains in popularity.
Server bandwidth is reduced, but some servers will always be required.

Local Node

Package
Downloader

DHT Proxy
Downloader

Server

Remote Peers

DHT Peer
Server

1

2 3

4

5a 6a

5b

6b

7

files are available to everyone for free
cryptographic hash of the file is available
before downloading
all content is divided into packages
altruistic users exist who are willing to
contribute upload bandwidth but have no
way to do so

users are only interested in a small
percentage of the total packages available

a small percentage of packages are
updated regularly (daily)

packages are mostly small in size, but
some can be very large

CDF of Debian packages' size, both by the number of
packages, and taking into account the popularity of
each package. 80% of packages are less than 1 MB,
but a few packages are hundreds of MB.

The size of Debian's daily archive updates, broken up
by architecture. Approximately 1% (by size) of the
119,000 MB archive is updated every day.

simple to implement, as unique implementations
are required for different systems
work with the existing mirrors unmodified and
deploy incrementally with no user dissatisfaction
no undue burden is placed on any peers
fast lookup times to support interactive
downloading
fast download times using techniques borrowed
from other P2P programs (BitTorrent)

integrates with the traditional package downloader
by operating as a proxy between the package
downloader and the server/peers (1, 7)

peers that are sharing individual packages are
found using lookups of the cryptographic hash of
the package in the DHT (2, 3)

packages are downloaded from peers in parallel,
using multiple peers and breaking up larger
packages into pieces for efficiency (5a, 6a)

packages that can not be found in peers fall back
to downloading from the server, so the server
operates as a seed in the system for new or rare
packages (5b, 6b)

peer information (and piece information) is stored
in the DHT indicating that this peer now has the
package available to share

Debian users are typically only interested in less than
5% of the 23,000 packages available to them.

modified version of Kademlia using ideas from the
BitTorrent tracker-less DHT
everything is stored as bencoded dictionaries (like
BitTorrent), making enhancements easy
peers store their location (IP/port) value at the key
that is the cryptographic hash of the package
modified to support multiple values (peers) per key
(package)
improved lookup times (still needs work)
large packages are broken up into 512 kB pieces,
and the piece hashes are stored in the DHT

a single piece
no piece hashes are needed
peers store only their location

a few pieces
hash the pieces of the package
store the piece hashes with the peer location at the
package's hash key

10's of pieces
too many pieces to store with the peer location
hash the list of piece hashes to get a piece hash key
store the list of piece hashes at the piece hash key
store the piece hash key with the peer location at the
package hash key

100's or 1000's of pieces
too many pieces to store in the DHT
hash the list of piece hashes to get a piece hash key
save the list of piece hashes so others can request it
using the piece hash key
store the piece hash key with the peer location at the
package hash key

The popularity of the apt-p2p example implementation
program in Debian. The line indicates the first upload to
the archive on May 2. Not all users report popcon
statistics so the numbers are a lower bound, and in
reality are probably larger by a factor of 2 or 3.

caching HTTP proxy for Debian's APT package
download program
DHT is based on Khashmir
all peers are HTTP/1.1 servers, which support
pipelining multiple requests and Range requests
for pieces of a package
servers are also HTTP-based, and so are used
almost identically as peers
implementation is available for any Debian user to
install in the apt-p2p package

thanks to NSERC for its generous support of this
research through its post-graduate scholarship

Many Current Systems

Piece Hash Storage Strategy

