Leveraging Altruistic Peers to Reduce the Bandwidth Costs of Free Content Downloads
Cameron Dale (camerond@cs.sfu.ca) and Jiangchuan Liu, Simon Fraser University

()
| Many Current Systems |
@ files are available to everyone for free
@ cryptographic hash of the file is available
before downloading
@ all content is divided into packages
@ altruistic users exist who are willing to
contribute upload bandwidth but have no
way to do so
/@ ‘ redhat B cUSE \
' fedora F NK
debian SR TOD @
Mac 1353
CPéN C 4 'lf slackware
9 ; g/ I
& 3 Cygwin FreeBSD ++ QLT J (2
Qbuntu A few of the groups that could benefit Mandri\y
_ Y,
4 f) ~N
. Problems to be Solved |
@ users are only interested in a small
percentage of the total packages available
Debian users are typically only interested in less than
5% of the 23,000 packages available to them.
@ packages are mostly small in size, but
some can be very large
1 HEEHEHEEHHH | | HEHEEHEHEHH | L AP i
: : : P By Wumber
08k cbedbebinb b eb s bbb bbb e bbb bbb b et Y
R R R
D.?_ .. .E.
% 0.5 %
L
Y A I S S O A U S 1 SO O 5 RGO SO 0 I H
DE ... =
|:|1
10” 10’ 10° 10" 10" 10°
Package Size kE)
CDF of Debian packages' size, both by the humber of
packages, and taking into account the popularity of
each package. 80% of packages are less than 1 MB,
but a few packages are hundreds of MB.
@ a small percentage of packages are
updated regularly (daily)
Daily dinstall run size by arch {past quarter)
: N
g - ! % I
The size of Debian's daily archive updates, broken up
by architecture. Approximately 1% (by size) of the
119,000 MB archive is updated every day.
_ Y,

~ (.) <
| Requirements)
@ simple to implement, as unique implementations are
required for different systems
@ work with the existing mirrors unmodified
@ deploy incrementally with no user dissatisfaction
@ no undue burden iIs placed on any peers
@ fast lookup times to support interactive downloading
@ fast download times using techniques borrowed
from other P2P programs (BitTorrent)
_ _/
a ())
. Incremental Deployment |
The Current Situation
Server Serv
-
Client Client
Client Client E
| v Client
i i = &
N Client — Client cjient Client
Client
Incremental deployment as users slowly adopt the new P2P system.
During the deployment the users are still fully functional.
Early P2P System
| Mirror Network \
| Server Server Server Server |
| |
\)
Client Client Client Client
= Client
-
Client r Peer Peer Client
- B B E
o = c C ‘\. ; ! C
e Peer lent len - P Peear len
Client ‘\4‘1! / Peer Client ;
Peer Peer
Eventually word spreads and the P2P system gains in popularity.
Server bandwidth is reduced, but|some servers will always be required.
Final Deployment
Mirror Network
Server Server
_ _/

(

(

@ Integrates with the traditional package downloader

L Proposed Model]

)

by operating as a proxy between the package / Local Node

downloader and the server/peers (1, 7)

@ peers that are sharing individual packages are
found using lookups of the cryptographic hash of ~ Down
the package in the DHT (2, 3)

@ packages are downloaded from peers in parallel, _

Package

_____ - — a3 - - - — 3 -

5b

Proxy Server

I I
oader |—1> DHT |—4> Downloader 6b

using multiple peers and breaking up larger

packages into pieces for efficiency (5a, 6a)

@ packages that can not be found in peers fall back
to downloading from the server, so the server
operates as a seed in the system for new or rare
packages (5b, 6b)

@ peer Information (and piece information) is stored Remote Pe
In the DHT indicating that this peer now has the \
package available to share

ers

(

L

Customized DHT] A

)

@ modified version of Kademlia using ideas from the
BitTorrent tracker-less DHT

@ everything is stored as bencoded dictionaries (like
BitTorrent), making enhancements easy

@ peers store their location (IP/port) value at the key
that is the cryptographic hash of the package

@ modified to support multiple values (peers) per key

(package)

@ improved lookup times to support interactive
downloads (still needs work)

@ large packages are broken up into 512 kB pieces,
and the piece hashes are stored in the DHT

[Piece Hash Storage Strategy |

@ a single piece

@ no piece hashes are needed
@ peers store only their location

@ a few pieces

@ hash the pieces of the package

@ store the piece hashes with the peer location at the
package's hash key

@ 10's of pieces

@ too many pieces to store with the peer location

@ hash't
@ store t
@ store t

package hash key
@ 100's or 1000's of pieces

ne
ne

ne

Ist of
Ist of

viece

niece hashes to get a piece hash key
niece hashes at the piece hash key

nash key with the peer location at the

ﬁ Example Program: apt-p2p }

@ caching HTTP proxy for Debian's APT package
download program

@ DHT Is based on Khashmir

@ all peers are HTTP/1.1 servers, which support
pipelining multiple requests and Range requests
for pieces of a package

@ servers are also HTTP-based, and so are used
almost identically as peers

@ implementation is available for any Debian user to
iInstall in the apt-p2p package

apt-p2p popcon graph

608

58

48 -

ia

nunber of subnitters

20

18

—
a83-g4-12 a8-04-26 A83-85-10 A8-05-24 03-06-87 a83-B6-2
date

The popularity of the apt-p2p example implementation
program in Debian. The line indicates the first upload to
the archive on May 2. Not all users report popcon
statistics so the numbers are a lower bound, and in
reality are probably larger by a factor of 2 or 3.

@ too many pieces to store in the DHT
@ hash the list of piece hashes to get a piece hash key

@ save the list of piece hashes so others can request it
using the piece hash key

@ store the piece hash key with the peer location at the
package hash key

~

)

— Acknowledgements |

@ thanks to NSERC for its generous support of this
research through its post-graduate scholarship

program

